In association with

Brisbane City Enterprise Pty Ltd, Australia AQUA Consultant and Associates Ltd, Bangladesh Building Design Authority, Nepal CEMAT Consultants, Nepal

Monthly Progress Report (December, 2016)

Secondary Towns Integrated Urban Environmental Improvement Project (STIUEIP), Biratnagar, Nepal

08 Jan, 2017

Biratnagar Sub - Metropolitan City, Nepal

Project Name: Secondary Towns Integrated Urban Environmental Improvement Project (STIUEIP)	
Project Number:	56064023
Report for:	Biratnagar Sub Metropolitan City, Nepal

PREPARATION, REVIEWand AUTHORISATION

Revision	Date	Prepared by	Reviewed by	Approved for Issue by
	08 January, 2017	DSC		

ISSUE REGISTER

Distribution List	Date Issued	Number of Copies
Biratnagar Sub Metropolitan City, Nepal:	08 January, 2017	3
SMEC staff:		1
Associates:		1
Nepal Office Library(SMEC office location):		1
SMEC Project File:		1

SMEC COMPANY DETAILS

SMEC International Pty Ltd

South Asia Regional Office, H-372, R-6, DOHS Baridhara, Dhaka, Bangladesh

Tel: +8802 841 3571

Fax: +8802 882 7545

Email: smec@smec.com

www.smec.com

The information within this document is and shall remain the property of SMEC International Pty Ltd.

1.	Salient Feature of Contract Package: STIUEIP/W/BRT/ICB-01	4
2	INTRODUCTION/BACKGROUND	.5
3.	SUB-PROJECTCOMPONENTS	.6
3.	1 Sewer Lines	.6
3.	2 Storm Water Drains	.8
3.	3 Waste water Treatment Plants	11
3.	4 Roads and Lanes	14
3.	5 Environmental Aspect	14
3.	6 Social Aspect	14
3.	7 Financial Plan	15
3.	8 Disbursement Records in Construction	15
4.	OBJECTIVES AND SCOPE OF WORKS	16
4.	1Objectives	16
4.	2 Scope of Works	16
5.	PROGRESS OF SUB-PROJECT COMPONENTS	16
5.	1 Storm Water Drains	16
5.	2 Sewer Lines	17
5.	3 Waste Water Treatment Plant	17
5.	4 Road and Lanes Improvement Works	.17
	5 Construction Materials	
5.	6 Construction Material Testing Lab	.18
5.	7 PHYSICAL PROGRESS TILL DECEMBER, 2016	19
	MMARY OF ACTIVITIES CARRIED OUT UP TO PREVIOUS MONTHS	
	1 Organization and Staffing	
	2 Inception Report.	
	3 Conceptual Catchment Plan and Design Criteria	
	4 Survey	
	5Design	
	6Preconstruction Activity	
	7 Draft Report	
	8Final Report	
	10 Key Dates	
	DETAILS OF ACTIVITIES CARRIED OUT IN THIS MONTH OF December 2016	26
	1 Physical Progress in This Month	
	2 Cumulative Progress (S Curve)	.30
ACT	TAILS OFSAFEGUARD ACTIVITIES (SOCIAL, ENVIRONMENTAL AND RESETTLEMENT IVITIES AND ISSUES)	31
	1 Social Issues	31
8.	1.1Operational Guidelines for Community Mobilization and Implementation of CDP	31
9 K	EY ISSUES AND REMARKS / REASONS FOR DEVIATION (IF ANY)	
	CTINGPROGRESS	33

10 WORK PLAN FOR THE NEXT MONTH	33
Annex-1: Progress December, 2016	34
Annex-2: Photographs of December, 2016	35
Annex-3:Financial Status (Details of submitted invoices and receipt of payments v	
` ' ' '	,
Annex-4:Status of actions agreed with previous ADB loan review mission	
Annex-5: Professional input as per contract vs input used till this reporting period.	48
Annex-6: Minutes of Meeting December, 2016	52
Annex-7: A Laboratory Test Results of December, 2016	53
Annex-8: Contractor's Progress Report for December, 2016	56
List of Tables:	
Table1: Proposed Sewer Lines in BMSC	6
Table2: Proposed Storm Water Drains in BMSC	8
Table3: Proposed Waste Water Components	
Table4: Proposed Roads	
Table5: Disbursement Records in Construction to date	
Table 6: Plan vs. Actual Progress	
Table 7: Agency-wise Financial Contribution	
Table 9: Key Dates	
Table 10: Physical Progress in Storm Water Drains	
Table 11: Physical Progress in Road Side Drain of R2 and Sewer Lines	
Table 12: Physical Progress in Sewer Lines	
Table 13: Physical Progress in Manholes	
Table 14: Physical Progress in Roads and Lanes	
Table 15: Physical Progress in Waste Water Component	
Table 16: Physical Progress in Production of Precast Items in Katahari	28
Table 17: Physical Progress in Production of RCC Hume Pipes at Itahari	
Table 18: Contractor's Key Staff	
Table 19: Contractor's Equipment	29
List of Figures:	
Figure 1: Proposed Sewer Lines in BSMC	7
Figure 2: Proposed Storm Drains in BSMC (Northern Drainage System)	
Figure 3: Proposed Storm Drains in BSMC (Southern Drainage System)	10
Figure 4: Proposed Waste Water Treatment Plant at Jatuwa in BSMC BSMC	13
Figure 5: Plan Vs Actual Progress till December, 2016	
Figure 6: Organization and Staffing	
Figure 7: S Curve of Dhysical Progress	20

1. SALIENT FEATURE of Contract Package: STIUEIP/W/BRT/ICB-01

General Features	
Name of Project	Secondary Towns Integrated Urban Environmental Improvement Project(STIUEIP)
Executing Agency	Government of Nepal, Ministry of Urban Development Department of Urban Development and Building Construction (DUDBC)
Implementing Agency	Biratnagar Sub-Metropolitan City, Biratnagar
Funded By	Asian Development Bank &Government of Nepal
Package	Sewerage and Drainage Network, Wastewater Treatment Plant and Road and Lanes Improvement Sub Project
Contract No.	STIUEIP/W/BRT/ICB-01
Location	Biratnagar Sub-Metropolitan City, Biratnagar
Consultant	SMEC in association with Brisbane/AQUA/BDA/CEMAT
Contractor	CTCE-KALIKA Joint Venture
Date of Commencement	08 December, 2013
Revised date of Completion	09 March, 2017
Revised Contract Amount including PS and VAT (After VO-2)	NRs 2,719,617,069.21
Revised Contract Amount incuding PS and VAT (VO-3 under process)	NRs 2,977,784,619.92
Paid Amount up to IPC 20	NRs. 1,734,326,306.82 (Including PS & VAT)
Physical Progress till December, 2016	69.78% (wrt to vo-02) 63.12% (wrt to vo-03)
Financial Progress	63.77% (wrt to vo-02) 58.24% (wrt to vo-03)

2 INTRODUCTION/BACKGROUND

- 1. SMEC International Pty (Australia)in association with Brisbane City Enterprise Pty Ltd (Australia), AQUA Consultant and Associates Ltd (Bangladesh),Building Design Authority (Nepal) and CEMAT Consultants(Nepal) have entered for a Contract of Consulting Services with Secondary Towns Integrated Urban Environmental Improvement Project (STIUEIP),Project Implementation Unit(PIU), Biratnagar Sub metropolitan City on 7th December 2011. This monthly Progress Report of December, 2016 has been submitted to the PIU as per the Work Program proposed in the consultant's technical proposal as well as TOR of the consultant.
- 2 Secondary Towns Integrated Urban Environmental Improvement Project(STIUEIP), the Department of Urban Development and Building Construction (DUDBC),under the Ministry of Urban Development(MUD) through the Government of Nepal (GoN) has received the loan from Asian Development Bank (ADB) Loan 2650-NEP. As per PAM contribution from GoN is 3.99 million USD, Asian Development Bank (ADB) 18.86 million USD and Biratnagar Sub-metropolitan City (BSMC) 1.99 million USD while contingency is 2.88 million USD for Secondary Towns Integrated Urban Environmental Improvement Project (STIUEIP), Biratnagar. The cost sharing has been revised in April, 2013as: Government of Nepal (GoN) is 5.960 Million USD, Asian Development Bank(ADB)24.214 Million USD, TDF loan 4.098 Million USD and Biratnagar Sub-metropolitan City(BSMC)2.980 Million USD and in total **37.252** Million USD.
- 3. In line with ADB's Strategy 2020 and based on Nepal's fundamental long term needs and on the GoN's priority, the ADB is continuing to support the Government in(i) improving urban infrastructure; improving access to water supply and sanitation (ii) supporting urban environmental improvement(iii) strengthening the operation and management skills of local governments. The proposed project Secondary Towns Integrated Urban Environmental Improvement Project (STIUEIP) is another step forward to promote healthy cities by creating healthier urban environments and was formulated under the PPTA 2010.
 - Contract of consulting services signed on 07December 2011.
 - Design works commenced on 01 January 2012.
 - Final design works submitted to the Client on March 2013
 - Contract of construction works signed on 02 December 2013
 - Construction works commenced on 08 December 2013
 - Contractor's Work Program (Revision 02) 05 December 2014, this has to be revised as the work progress is not consistent. The Contractor is advised to revise the work program and it is expected to receive by the end of August 2015. The Contractor has officially submitted the third (3rd) revised work program through the Contractor's letter in 15th September 2015 (received on 23rd September 2015). Revised Work schedule has to be submitted after EoT-01(up to 09 March, 2017).

3. SUB-PROJECTCOMPONENTS

3.1 SEWER LINES

4. The prioritized sewer lines for Final Detailed Engineering Report of BSMC are as follows:

Table1: Proposed Sewer Lines in BSMC

S N.	Description Description	Unit	Quantity
1	Sewerage Pipe Supply and Installation	m	63,964.0
	Reinforced Concrete Pipe laying and jointing		16,612.0
	Line T1 (Secondary	m	3,788.0
	Line T2 (Trunk)	m	8,370.0
	Line T3 (Trunk)	m	4,136.0
	Line T4 (Secondary)	m	318.0
	HDPE laying and jointing	m	47,352.0
	Line T1 (Secondary	m	7,124.0
	Line T2 (Trunk)	m	19,410.0
	Line T3 (Trunk)	m	18,606.0
	Line T4 (Secondary)	m	22,12.0
2	Manhole (Brick / RCC)	no.	2,036
3	Sewer Inlet	no.	3,766.00
4	House Connection	no.	5,930.00
5	Reinstatement of Roads	km	66.06

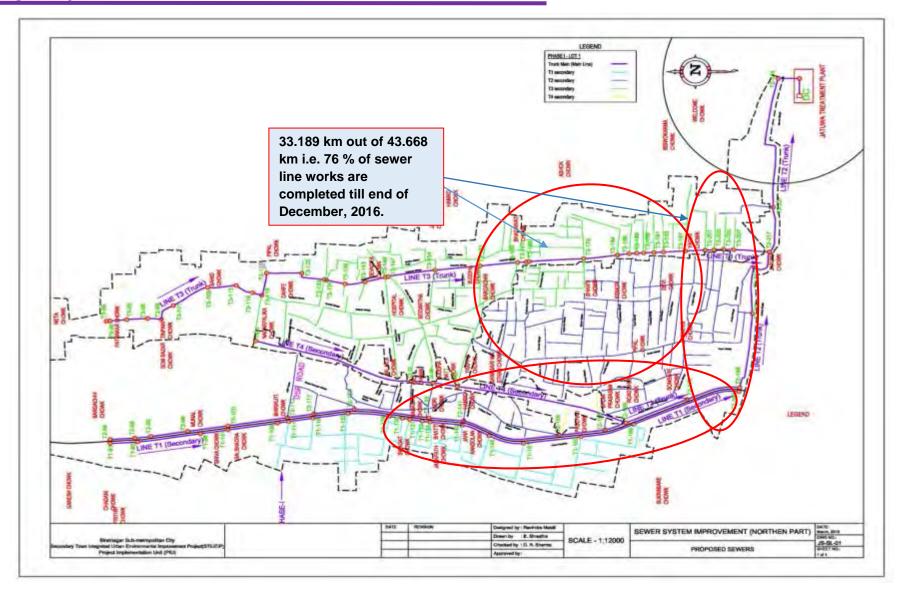


FIGURE. 1PROPOSED SEWER LINES IN BSMC

3.2 Storm Water Drains

5. Most of the storm drains(S13,S11,S9,S5,B1,B2,B3,CN2,CN3 and southern parts) have been provisioned as Phase I priority works. The major storm drain outlets as planned are14 numbers and catchment areas and discharges are respectively1, 324.2Ha and 73.21 cum/sec.

Table2: Proposed Storm Water Drains in BSMC

S.No.	Description	Unit	Quantity
Α	Storm Drain for Northern Parts		28,491.00
ı	Storm Drain Lines	m	28,491.00
II	Culvert	no	41
Ш	Outfall	no	15
IV	Rain Inlet	no	30
V	Manhole	no	30
VI	Canal Crossing	no	11
В	Storm Drain for Southern Part		
I	Brick Masonry Drain	m	8,483
II	Cleaning and Maintenance of Existing Drain	m	7,273
III	Culverts	no	38
С	Rehabilitation of Existing Drain		
ı	Drain Cover	m	30,467
II	Cleaning and Maintenance of Existing Drain	m	33,601

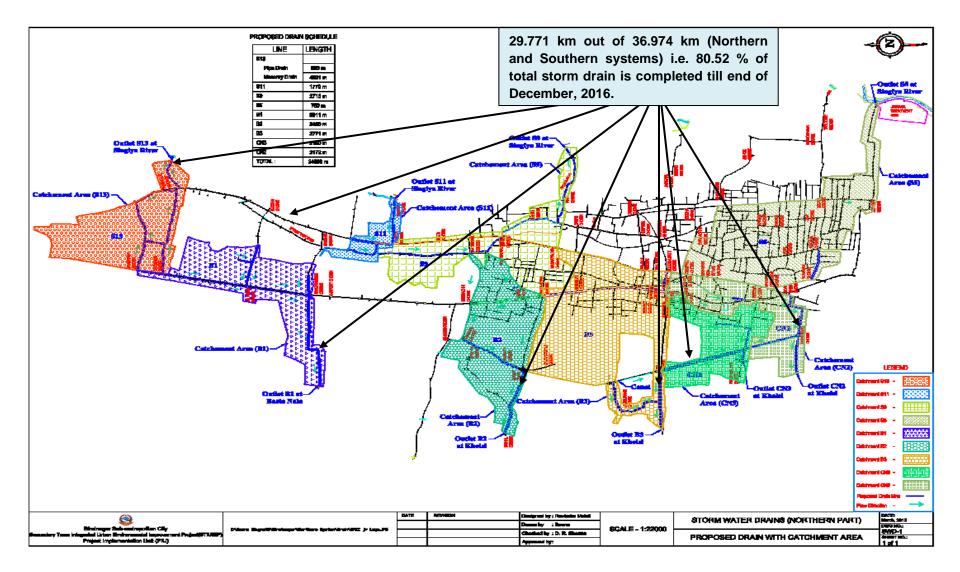


Figure 2: Proposed Storm Water Drains in BSMC (Northern Drainage System)

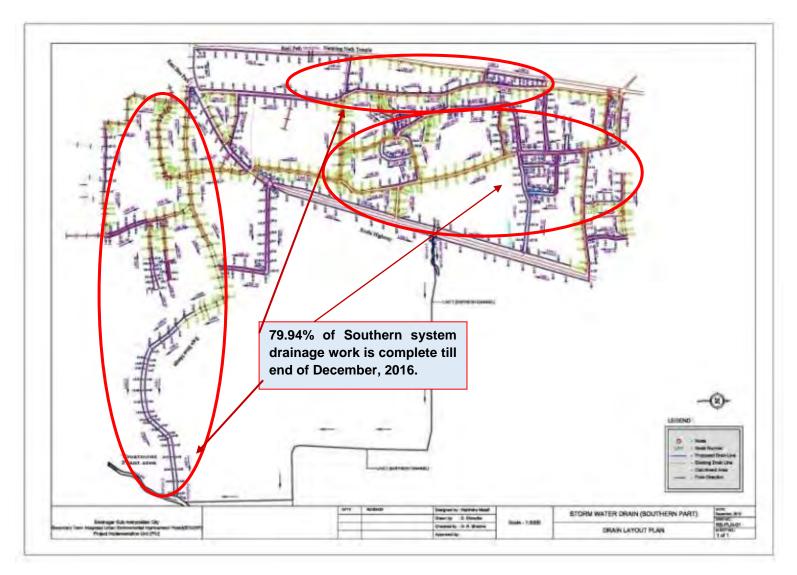


Figure 3: Proposed Storm Water Drains in BSMC (Southern Drainage System)

3.3 WASTE WATER TREATMENT PLANTS

6. The quantity of domestic waste water is calculated using water supply rate at 90 liters per person per day in the design year 2035, out of which 80% is converted into waste water. Maximum quantity of waste water is calculated taking peak factor of 1.99 to 2.5. Minimum quantity of sewage is taken as 30% of the average quantity. Commercial / Institutional / Industrial waste water quantity is calculated as 0.10 LPS/ha. While infiltration quantity is calculated as 0.14 LPS/ha in the design year 2035. The total quantity of commercial / institutional / industrial and infiltration waste water estimated as 237.79 LPS in the design year 2035 which is very large in comparison with domestic waste water quantity of 207.18 LPS. The maximum quantity (peak flow) of waste water in the design year 2035 for both Phase I and Phase II are as is estimated at 650.08 LPS. The maximum quantity of the waste water for Phase I are as only is estimated at 213.97 LPS. The capacity of the Phase I WWTP has been adopted as 214 LPS. The capacity of the Phase II WWTP will be thus 436 LPS. Features of WWTP at Jatuwa are as follows:

Table 3: Proposed Waste Water Components in BSMC

S.N.	Description	Unit	No
	Waste Water Treatment Plant Component		
1	By Pass Chamber	No	1
2	Distribution Chamber	No	1
3	Bar Screen Chamber	No	2
4	Sump well with Pumping Station	No	2
5	Collection Chamber1	No	1
6	Oil &Grease Chamber	No	2
7	CollectionChamber2	No	1
8	Grit Chamber	No	2
9	CollectionChamber3	No	1
10	Anaerobic Pond	No	3
11	Facultative Pond	No	3
12	Collection Chamber4	no	1
13	Outfall Structure	no	1
14	Sludge Drying Bed	no	10
15	Enclosure Chamber Shed	no	1
16	Guard House	no	1
17	Office Cum Lab Building	no	1
18	Workshop Building	no	1
19	Generator/Changing House	no	1
20	Entrance Gate	no	1
21	Boundary wall	m	1,340
22	Shallow Tube Well with water Tank	set	1
23	Landscaping and Plantation works	sqm	99,915
24	Site clearance, grubbing, surface dressing	sqm	99,915
25	Road and Drain Improvement	m	1,440

26	River training works	m	600
27	Electromechanical works	Set	1
28	Lab Equipment and installation	Set	1

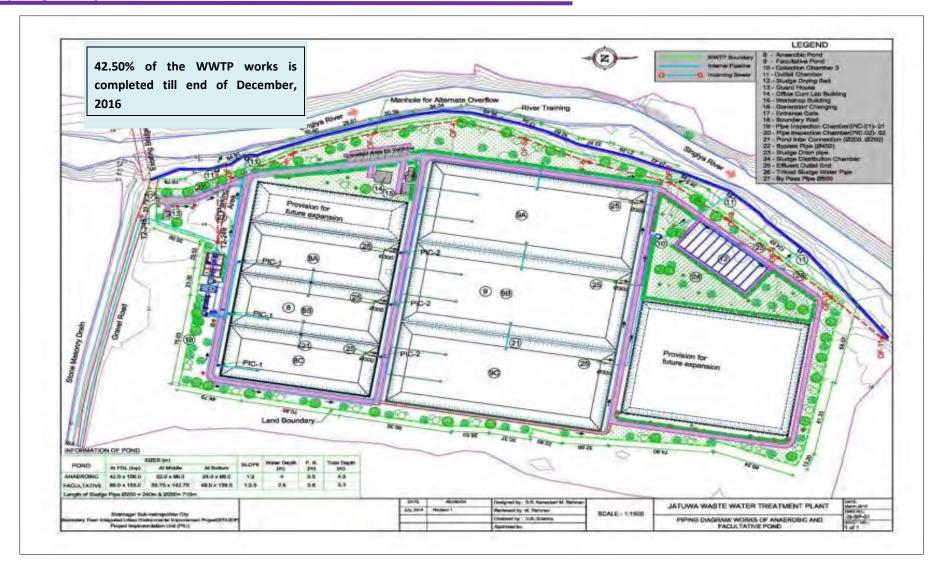


Figure 4: Proposed Waste Water Treatment Plant at Jatuwa in BSMC

3.4 Roads and Lanes

7. Most of the roads/lanes in Biratnagar are in a poor state due to lack of periodic maintenance, and need improvement, where as some of the roads are graveled and would benefit from upgrading. In the areas where drainage and sewerage works are proposed there will be significant impact on the existing roads. The 2.35 Km road improvement from Pushpalal chowk to Bhatta chowk is near to complete ie. 2.096 Km length is black topped and 1.048 Km has been Sub-graded till this month and hence the Project has considered on design based on reinstatement, rehabilitation and upgrading of existing roads and lanes.

Table 4: Proposed Roads in BSMC

Description of Item	Quantity
Main Road Improvements(Road from Pushpalal Chowk to Bhatta Chowk)	2.35 Km
Reinstatement and Road Improvements (under sewer line installation)	63.71Km

3.5 Environmental Aspect

- 8. The project is environmental improvement project and mainly constitutes works on sewerage and drainage improvement works in BSMC besides others. As per ADB guide lines on Environmental Assessment requirements, this project is classified as Environment Category B. According to Environmental Protection Guidelines, 2054BS, First Revised (2055BS) schedule-3, IEE is required for Operations of Sewerage Schemes under Schedule-1.h.2.e (pertaining to Rule3). The final report on IEE was submitted and MoUD had approved the IEE on May14, 2013.
- 9. Installation of functioning sewers and functioning drainage system including roads/lanes improvement in BSMC does not possess any adverse environmental impacts to its surrounding. In fact, these will greatly enhance the living conditions/hygiene of the in habitants and facilitate transportation. Nevertheless, it is imperative to look into positive as well as negative impacts of such infrastructure development works in the urban area.
- 10. DSC has prepared and submitted Environmental Progress Reports (Semi-Annual) October 2014 March 2015 and Quarterly Updated Environmental Report, January March on 27 May 2015.Recently, the DSC has received comments from PCO to revise semi-annual environmental report. The next Quarterly Updated Environmental Report for the months of April, May and June 2016 and semi –annual report has been submitted in July, 2016. The next Quarterly Updated Environmental Report for the months of June 2016- December 2016 semi –annual report is under preparation.

3.6 SOCIAL ASPECT

11. Secondary Towns Integrated Urban Environmental Improvement Project (STIUEIP) in Biratnagar has commenced from 2010 to improve the quality of life and help to achieve higher and more socially inclusive economic growth of people through effective, efficient, and reliable delivery of improved and affordable municipal services. Infrastructure development of drainage and sewerage system as well as roads and lane improvement are the major components of STIUEIP in Biratnagar Sub-Metropolitan City (BSMC). Besides this, community development and institutional strengthening components, the two other objective focused components of STIUEIP Biratnagar are running various social development programs and activities.

Social development component is one of the major components of STIUEIP Biratnagar that comprises of various social development programs and activities like community development

program (CDP), awareness raising, skill development, health and sanitation. Social Development Specialist (SDS) in Design and Supervision Consultant (DSC) is deputed to assist the Project Implementation Unit (PIU) in implementing effectively the social activities to achieve the project goal as envisaged by the project. Monitoring of ongoing social development activities and consultation meetings with community people are the general tasks to be accomplished as regular basis.

Establishment and functioning of Social Safeguard Desk in PIU is a major milestone of social development aspect which has been effective to address all social/ community development issues and concerns with active initiation of the DSC.

Based on the poverty indicators, all details have been documented and shown in the social map. The program area for community development programs has been extended to most poverty stricken area scattered across several wards of the BSMC. The Community Development Program includes meetings, orientation, awareness activities, skill development trainings and health, hygiene and sanitation activities which are conducted and organized by the NGO (Fri PAD).

12. As there is slack period of the construction due to monsoon, currently, the drain work has been stopped due to rain water and construction materials.

The next Quarterly Report for the months of June 2016- December 2016 semi –annual report is under preparation.

3.7 Financial Plan

13.The Sub-project cost will be disbursed in three years starting from FY2013/14 to 2015/16.It has estimated that 20 percent of the Sub-project cost will be disbursed in first year. Similarly, in second year, 50 percent will be disbursed. Finally, remaining 30 percent of Sub-project cost will be disbursed in third year. Actual disbursement in the first fiscal year was 4.3 %(up to July 2014); 34.3% (up to July 2015 inclusive VO1) in second fiscal year was 56.72% so total was 61.02% (up to October, 2016). Hence the remaining disbursement 38.98 % will be done in third year.

3.8 DISBURSEMENT RECORDS IN CONSTRUCTION

Table 5: Disbursement Record in Construction to Date

.N.	Description of Payment	Total Bill Amount with VAT & PS	Amount in NRs.
1	IPC 01		209,400,000.00
2	IPC 02	29,553,479.92	27,853,500.98
3	IPC 03	50,406,775.75	47,507,270.95
4	IPC 04	44,819,505.68	42,241,392.52
5	IPC 05	23,380,168.96	22,035,291.99
6	IPC 06	90,796,339.68	85,573,541.38
7	IPC 07	80,854,600.52	76,203,672.17
8	IPC-08	122,334,488.86	115,297,549.23
9	IPC-09	116,092,187.14	109,414,317.97
10	IPC-10	132,327,417.89	124,715,663.77
11	IPC-11	169,853,829.07	160,083,476.07

12	IPC-12	23,121,515.46	16,931,906.24
13	IPC-13	85,563,926.44	62,658,539.06
14	IPC-14	163,562,505.71	119,776,967.67
15	IPC-15	139,008,112.96	101,795,764.14
16	IPC- 16	137,640,413.95	100,794,196.94
17	IPC-17	135,118,714.02	98,947,553.85
18	IPC-18	39,288,088.98	28,770,702.33
19	IPC-19	76,081,596.87	55,714,620.72
20	IPC-20	74,522,638.96	54,572,994.46
	Grand Total	1,734,326,306.82	1,450,888,922.42
	Total payment to date including PS & VAT and Excluding mobilization	1,734,326,306.82	

4. OBJECTIVES AND SCOPE OF WORKS

4.1 OBJECTIVES

- 14. The following are the expected physical infrastructure improvement outputs of the project in Biratnagar:
 - Drainage and sewerage systems improvement.
 - Urban roads and lanes improvement.
- 15. Reference to the deliverables identified in the Project, indicates that there are a number of deliverables related specifically to the design aspects of the above infrastructure improvements with construction works.

4.2 SCOPE OF WORKS

- 16. The scope of works for consultant's services is fairly detailed in the TOR attached with contract Agreement. The main points are summarized below:
- A. Detailed Design and Procurement Assistance Phase
 - 1. Surveys verification of Feasibility Studies and GIS Base Maps
 - 2. Finalization of Design Criteria, Preparation of Manuals, Guidelines and Systems.
 - 3. Specific design requirements for the sub-projects
 - Improvement and development of drainage and sewerage systems
 - Improvement of urban roads and lanes
 - 4. Project Planning and Management Support to PIU
 - 5. Detailed Engineering Design
- B. Construction and Post Construction Management Phase
 - 1. Construction Management and Contract Administration
 - 2. Environmental and Social Compliance Monitoring
 - 3. Implementation of Community Development Program, Community Mobilization and GESI Action Plan
 - 4. Capacity Building of the Municipality and Service Providers for Operational Sustainability

C. Communications, Reporting and Deliverables (Inception Report, Monthly Progress Reports, Interim Report for each of the outputs, Annual Progress Report, Draft Final Report for each of the outputs and Final Report).

5 PROGRESS OF SUB-PROJECT COMPONENTS

5.1 STORM WATER DRAINS

17. The Contractor has resumed the works from mid December 2015 in difficult situation due to Madesh Strikes and partial fuel supply. Storm drains at S9, S5, and Rani Area are being continued.

The contractor has completed storm water drain about 29.771 km out of 36.974km, 80.52% till November, 2016.

5.2 SEWER LINES

18. The Contractor has resumed the sewer works from mid December 2015 in difficult situation due to Madesh Strikes and partial fuel supply. Sewer lines with HDPE pipes has been resumed in this month but RCC pipes have not been resumed till November 2016.

The Contractor has completed sewer lines with HDPE and RCC pipes about 29.652 km out of 63.964 km which is 45.87%, till November, 2016.

The proposal of the precast concrete manholes, sewer inlets and house connection chambers had been submitted for review and approval. Approval in consultation with the Employer has been given to the Contractor to execute at site because the proposal comes out to be economical, time effective and environmental friendly and structurally strong enough to carry out the function of their respective items.

The precast concrete house connection chambers, sewer inlets and manholes were installed at sites and found to be effective and we were able to open traffic at the shortest possible time. Especially where the business center with crowds (in R5 and R65 Roads) were very efficient and effective. This has reduced disturbances to the local people and road users, dumping of construction materials, workers and working for long period. This is found to be environment friendly too. Hence, the adaptation of precast units for sewer lines found to be effective and efficient.

During the site visit of delegate at different time in the construction period from BSMC, PMSC, ADB, PCO, local political representatives, TLO, Executive Director of TDF and the Secretary of Ministry of Urban Development have commended.

The payment for the respective item of works as appropriate is being paid under each IPCs for the cash flow and to account disbursement in ADB's disbursement book.

5.3 WASTE WATER TREATMENT PLANT

19. Office cum laboratory building, workshop building and generator / changing house at WWTP, Jatuwa are completed. The Contractor had stopped activities except compound wall of WWTP site till November 2016.

Now the Contractor is carrying out landscaping, embankment filling, remaining boundary wall at WWTP from mid December 2015. Structure work in Sump well has been revised as per site condition.

5.4 ROAD AND LANES IMPROVEMENT WORKS

20. The Contractor has completed the rehabilitation / repair of existing drain of about 6.6 km in R2 road. The Contractor has completed the shifting/ relocating electric poles up to Pani tanki both sides.

The Contractor has been completed sub-grade preparation, sub-base, base course, prime and Tack coat and asphalt concrete in R2 road up to Bhatta Chowk.Recently contractor has completed sub-base up to Panitanki. Road works have been frequently disturbed due to the existing water supply network and house connection pipes. The Contractor has completed 100% of road side drain of R2 road up to Pani tanki and along the sewer lines about 14.303km out of 127.138 km, 11.25% till November, 2016.

5.5 CONSTRUCTION MATERIALS

21. The fabrication of steel moulds for precast units- manholes, sewer inlets and house connection chamber are continuing after the strikes at Madesh / Tarai similarly, other item of works inside the Contractor's yard is also going on smoothly..

The Contractor has resumed to produce the precast items (manholes, sewer inlets, house connection chambers, kerb stones, drain cover slabs etc.) at the Contractor's Camp, Katahari from mid December 2015.

5.6 CONSTRUCTION MATERIAL TESTING LAB

22. Construction material testing laboratory has been set up at the Contractor's camp at Katahari. Cube Test, Brick Compressive Strength, Cement Test is conducted in the Laboratory. Besides these tests, Aggregate Crushing Value (ACV), Flakiness Index (FI), Los Angeles Abrasion (LAA), CBR tests are also conducted.

As regular, Three Edge Bearing Test for RCC pipes of different diameter has been conducted on 20 January 2016 at Itahari in presence of Consultant (TL, CSE) and PM/PIU. And results were found satisfactory.

Now, construction material testing lab is working in full swing for testing of sub grade material, sub base material, base material, Bituminous items, concrete, brick, sand and aggregates.

5.7 PHYSICAL PROGRESS TILL DECEMBER, 2016

23. Total physical progress till December, 2016 is about 69.78% wrt to-02 and 63.12% wrt to-03 which is under progress. The Contractor has to submitted revised work schedule with respect to variation order no-03.

Table 6: Plan vs. Actual Progress till December, 2016

Secondary Towns	e Intograted Hrhai	s Environmontal	Improvement	Project (STIUEIP), I	2iratnaaar

Plan Vs. Progress

Month	Sep-14	Oct-14	Nov-14	Dec-14	Jan-15	Feb-15	Mar-15	Apr-15	May-15	Jun-15	Jul-15	Aug-15	Sep-15	Oct-15	Nov-15	Dec-15
Cumulative Planned work Rev 01 (%)	17.098	18.514	26.588	36.398	46.281	56.947	67.003	76.728	86.593	94.037	95.75	95.99	96.16	96.3	96.45	96.59
Cumulative Planned work Rev 02 (%)				14.04	20.11	28.74	37.22	44.94	51.60	57.295	59.33	60.92	60.99	61.07	64.65	71.29
Cumulative Planned work Rev 03 (%)													41.847	45.447	47.767	58.037
Cumulative Actual Achievements (%)	5.81	5.98	9.29	10.77	12.57	17.57	21.82	25.25	27.85	34.317	34.317	34.317	34.317	34.317	34.317	34.94
Progress lagging to date wrt revised work plan rev 03 (%)		(12.53)	(17.30)	(3.27)	(7.54)	(11.17)	(15.40)	(19.69)	(23.75)	(22.98)	(22.98)	(22.98)	(7.53)	(11.13)	(13.45)	(23.09)

Secondary Towns Integrated Urban Environmental Improvement Project (STIUEIP), Biratnagar

Plan Vs. Progress

Month	Jan-16	Feb-16	Mar-16	Apr-16	May-16	June-16	July-16	Aug-16	Sep-16	Oct-16	Nov-16	Dec-16	Jan-17	Feb-17	Mar-17
Cumulative Planned work Rev 01 (%)	96.74	97.38	97.18												
Cumulative Planned work Rev 02 (%)	79.29	88.71	96.41												
Cumulative Planned work Rev 03 (%)	69.51	80.67	91.46	97.82	100.00										
Cumulative Actual Achievements (%)	35.64	38.97	42.57	51.07	54.30	59.10	60.10	60.16	60.22	61.22	64.82	69.78/63.12			
Progress lagging to date wrt revised work plan rev 03 (%)	(33.87)	(41.70)	48.89	46.75	45.70										

6 SUMMARY OF ACTIVITIES CARRIED OUT UP TO PREVIOUS MONTHS

6.1 ORGANIZATION AND STAFFING

The Project has involvement of different organization and the staffing as shown below.

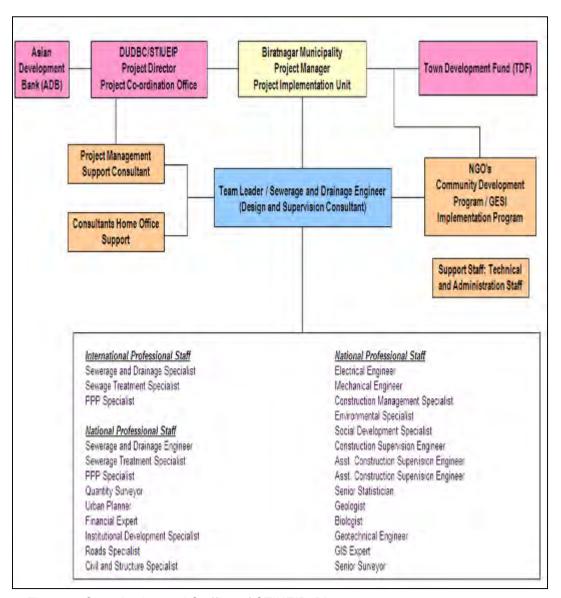


Figure 6: Organization and Staffing of STIUEIP, Biratnagar

6.2 Inception Report

24. The Inception Report was prepared and submitted on 29 February, 2012.

6.3 Conceptual Catchment Plan and Design Criteria

25. The Conceptual Catchment Plan and Design Criteria was prepared and presented in PCO on 30March, 2012.

6.4 SURVEY

26. The survey was completed in August, 2012

6.5 DESIGN

- 27. The design of sewer lines, storm drains, WWTPs and appurtenances and final detailed design and estimates were submitted in March 2013.
- 28. During construction B2, B3 and S5 alternate design was also submitted. Similarly, CN2 and CN3 were submitted as the community request to reduce the size. The size was reviewed with 1 year return period as per the suggestion made by PMSC during field visit. Minor modifications in drawings are being carried out for considering the site condition and progress.

6.6 Pre-construction Activity

29. After successful completion of one stage two envelope bidding procedure the construction contract for STIUEIP/W/BRT/ICB-01 was signed on December 2, 2013 with M/S CTCE-Kalika JV, Baluwatar, Kathmandu.

6.7 DRAFT REPORT

- 30. The construction/contract timing schedule was needed to incorporate some additional time of about 4-5 months to account for decision re-making process, tender award procedures.
- 31. The total cost as per PPTA and earlier designs increased drastically and came to be NRs.7, 274,465,206.69 and therefore needs curtailments and revisions had to be made as per suggestions by PIU in final report.
- 32. The overall works proposed in the PPTA and the area coverage with connection was thus needed to be phased out.

6.8 FINAL REPORT

- 33. The DSC submitted the Final Reports adopting cost reduction exercise by phasing out of the works. The estimated cost of the Project was reduced and kept as NRs.3, 278, 140, 000, 00 with a lot of exercises in March 2013.
- 34. The sharing of cost by concerned institutions is as follows

Table7: Agency-wise Financial Contribution to BSMC

Contributors	Amount(US\$)	Amount (NRs.)	%
Government of Nepal (GoN)	5,960,256	524,502,513	16.0%
Asian Development Bank (ADB)	24,213,539	2,130,791,460	65.0%
Biratnagar Sub-Metropolitan City (BSMC)	2,980,128	262,251,257	8.0%
Town Development Fund (TDF)	4,097,676	360,595,478	11.0%

6.9 CONSULTANT'S ACTIVITIES IN CONSTRUCTION PHASE

35. The current staffing of the consultant at project site is as follows

Table 8: Consultant's Staff at Project Site, Biratnagar

S. No	Name	Position
1	Giresh Chand	Officiating Team Leader/CSE
2	Jaya Prakash Yadav	Asst. Construction Supervision Engineer-1
3	Dikendra Katwal	Asst. Construction Supervision Engineer-2
4	Rajesh Yadav	Junior Engineer-1
5	Dipak Majhee	Junior Engineer-2
6	Bibek Yadav	Junior Engineer-3
7	Jay Prakash Yadav	Junior Engineer-4
8	Arun Kumar Yadav	Junior Engineer-5
9	Santosh Kumar Yadav	Office Manager/Computer Operator
10	Ramji Gimire	Driver-1
11	Suman Ghimire	Driver-2
12	Ramila Ghimire	Office Assistant

- 36. The consultant has been constantly supervising the contractor's work in daily basis. The consultant is mainly focusing in construction management, contract administration and the following activities but not limited as listed below:
 - i. Daily Construction supervision
 - ii. Quality control, cost control and time control
 - iii. Measurement and Certification of Interim Payment Certificates (IPC)
 - iv. Modification and design of storm drainage and sewer lines, manholes etc. as per site condition and approve working drawings
 - v. Supervise construction material testing and sampling
 - vi. Monitor Environment Management Plan and its compliance
 - vii. Monitor Social safeguard and Resettlement Plan and its compliance
 - viii. Meet obligation of reporting requirement Updated Environmental Progress Report, Updated Resettlement Progress Report, Monthly Progress Report, Semi-Annual Updated Resettlement Progress Report
 - ix. Prepare Due Diligence Report of the Project
 - x. Maintain correspondences with the Employer and the Contractor
 - xi. Assist to PIU

6.10 KEY DATES

The consultant has noted the following key dates for the month of December, 2016

Table 9: Key dates of events /activities:

S. No	Date	Activities/Events	Remarks
1			
2			

7 DETAILS OF ACTIVITIES CARRIED OUT IN THIS MONTH

7.1 Physical Progress in this month

The Employer has discussed/agreed/decided to curtail (base and Asphalt) the scope of the work due to some works were missed in original contract itself, some works were not foreseen in original contract, some works due to local demand etc.

Therefore, following are the physical progress with respect to variation order no-03 which is under process:

Table 10: Physical Progress in Storm Water Drains

	Physical Progress till December 2016											
		Droposed	Progr	ess								
S.N.	Location	Proposed Length (m)	Up to Nov 2016 (m)	This Month (m)	Total to Date (m)	Progress (%)						
1	B1	3,950	3628.00		3628.00	91.85						
2	B2	3,742	3724.00	0	3724.00	99.52						
3	В3	3,514	3363.00	0	3363.00	95.69						
4	S5	1201	1201.00	0	1201.00	62.16						
5	S9	3,178	2179.00	125	2304.00	72.49						
6	S11	2,092	2082.00	0	2082.00	99.52						
7	S13	5,640	4864.00	0	4864.00	86.23						
8	CN2	2,273	2142.00	0	2142.00	94.24						
9	CN3	2,170	1122.00	0	1122.00	51.71						
10	Rani	8,483	5333.00	8	5341.00	62.96						
	Total	36,974	29646.00	125	29771.00	80.52						

Table 11: Physical Progress in Road Side Drains:

	Physical Progress till December 2016											
				Prog	ress							
S.N.	Location	Length (m)	Total Length (m)	Up to Nov 2016 (m)	This Month (m)	Total to Date (m)	Progress (%)					
1	R2	6,440.0	12,880.0	6,325	0	6,325	49.11					
2	R3	2720.0	2720.0	2329	237	2566	94.34					
3	R4	970.0	1,940.0	660	0	660	34.02					
4	R5	1,715.0	3,430.0	700	440	1140	33.24					
5	R7	485	485	59	205	264	54.43					
6	R13	220.0	440.0	390	202	592	134.55					
7	R15	506.0	1,012.0	406	0	406	40.12					
8	R16	796.0	1,592.0	585	130	715	44.91					
9	R21	2420	2420	189.15	840	1029.15	42.53					
10	R22	358.0	716.0	554.40	121.60	676.4	94.41					
11	R24	396.0	792.0	437.60	391	828.6	104.62					
12	R25	606.0	1,212.0	284	502	786	64.85					

R26	861.0	1,722.0	898	0	898	52.15
R27	997.0	1,994.0	778.70	86	864.70	43.37
R28	620.00	1240.0	200	302	502	40.48
R31	187.00	374.0	40	170	210	56.15
R37	785	785	113	425	538	68.54
R64	121.0	242.0	121	0	121	50.00
R107	347.0	694.0	155	0	155	22.33
T2L18O	150.0	300.0	268	0	268	89.33
T3L26C	197.0	394.0	355	0	355	90.03
T3L26E	98.0	196.0	48	0	48	24.49
T3L26F	137.4	274.8	205	0	205	74.60
T3L28	74.0	148.0	145	0	145	97.97
Boundary Wall	1,322.7		1,133	0	1,133	85.66
Road Side		30325 5	17278 85	4051.60	21/30 /5	
	R27 R28 R31 R37 R64 R107 T2L180 T3L26C T3L26E T3L26F T3L28 Boundary Wall Road	R27 997.0 R28 620.00 R31 187.00 R37 785 R64 121.0 R107 347.0 T2L180 150.0 T3L26C 197.0 T3L26E 98.0 T3L26F 137.4 T3L28 74.0 Boundary Wall 1,322.7 Road Side Side	R27 997.0 1,994.0 R28 620.00 1240.0 R31 187.00 374.0 R37 785 785 R64 121.0 242.0 R107 347.0 694.0 T2L18O 150.0 300.0 T3L26C 197.0 394.0 T3L26E 98.0 196.0 T3L26F 137.4 274.8 T3L28 74.0 148.0 Boundary Wall 1,322.7 Road Side 1	R27 997.0 1,994.0 778.70 R28 620.00 1240.0 200 R31 187.00 374.0 40 R37 785 785 113 R64 121.0 242.0 121 R107 347.0 694.0 155 T2L18O 150.0 300.0 268 T3L26C 197.0 394.0 355 T3L26E 98.0 196.0 48 T3L26F 137.4 274.8 205 T3L28 74.0 148.0 145 Boundary Wall 1,322.7 1,133 Road Side 1,133	R27 997.0 1,994.0 778.70 86 R28 620.00 1240.0 200 302 R31 187.00 374.0 40 170 R37 785 785 113 425 R64 121.0 242.0 121 0 R107 347.0 694.0 155 0 T2L18O 150.0 300.0 268 0 T3L26C 197.0 394.0 355 0 T3L26E 98.0 196.0 48 0 T3L26F 137.4 274.8 205 0 T3L28 74.0 148.0 145 0 Boundary Wall 1,322.7 1,133 0 Road Side 10 1,133 0	R27 997.0 1,994.0 778.70 86 864.70 R28 620.00 1240.0 200 302 502 R31 187.00 374.0 40 170 210 R37 785 785 113 425 538 R64 121.0 242.0 121 0 121 R107 347.0 694.0 155 0 155 T2L18O 150.0 300.0 268 0 268 T3L26C 197.0 394.0 355 0 355 T3L26E 98.0 196.0 48 0 48 T3L26F 137.4 274.8 205 0 205 T3L28 74.0 148.0 145 0 145 Boundary Wall 1,322.7 1,133 0 1,133 Road Side 1,133 0 1,133

Table 12: Physical Progress in Sewer Lines:

		As per estin	nate	This mo	onth	Up to Pre	vious	Total to	Date	Progre	ss (%)
S.N	Location					Mont	h				
		Distance	МН	Distance	МН	Distance	МН	Distance	МН	Distance	МН
		(m.)	(no.)	(m.)	(no.)	(m.)	(no.)	(m.)	(no.)	(m.)	(no.)
1	HDPE(T1)	3817.10	127	177.70	9	3186.80	107	3364.50	116		
2	HDPE(T2)	13595.40	485	1268.50	40	11226.75	396	12495.25	436		
3	HDPE(T3)	7030.30	258	407.40	18	6073.70	216	6481.10	234		
4	HDPE(T4)	117.30	3	0.00	0	112.00	3	112	3		
5	Sub Total(HDPE)	24560.10	873	1853.60	67	20599.25	722	22452.85	789	91.42	90.38
6	Hume Pipe(T1)	5026.80	144	54	6	1726.50	47	1780.50	53		
7	Hume Pipe(T2)	9488.00	276	1269.50	60	4967.50	115	6237.00	175		
8	Hume Pipe(T3)	44.10	129	360.20	12	2141.30	50	2719.50	62		
9	Hume Pipe(T4)	183.50	5	0.00	0	0.00	0	0.00	0		
10	Sub Total Hume Pipe	19108.40	554	1683.70	78	9053.30	212	10737	290	56.19	52.35
11	Total (HDPE+Hume pipe)	43668.50	1427	3537.30	145	29652.55	934	33189.85	1079	76.00	75.61

Table 13: Physical Progress in Manhole, sewer inlet and House connection chamber

S.N.	Description	Proposed Quantity(no.)	This month	Up to Previous Month	Total to Date	Progress (%)
1	Manhole	1427	145	934	1079	75.61
2	Sewer inlet	2924	307	494	801	27.39
3	House connection chamber	4500	52	102	154	3.42

Table 14: Physical Progress in Roads and Lanes:

	Physical Progress till December 2016							
		D	Progress					
S.N.	Location	Proposed Length (km)	Up to Nov 2016 (m)	This Month (m)	Total to Date (m)	Progress (%)		
1	All roads Including WWTP road	43.832	Sub- grade=3224m Sub Base=2816m Base=2176m Prime Coat=2096m Asphalt Concrete=2096 m	Sub-grade=0m Sub-base=408m Base=0m Prime Coat=0m Asphalt Concrete=0m	Sub-grade=3224m Sub-base=3224m Base=2176m Prime Coat=2096m Asphalt Concrete=2096m			

Table 15: Physical Progress in Waste Water Treatment Plant (WWTP), Jatuwa:

Physical Progress till December 2016						
	S.N. Description	Proposed Quantity	Progress		Tatalita	
S.N.			Up to Nov 2016	This Month	Total to Date	Remarks
1	Anaerobic Pond	3 nos	3 (excavation)	0	3 (excavation)	
2	Facultative Pond	3 nos	2 (excavation)	0	2 (excavation)	
3	River Training Work	600 m	600 m	0	600 m	
4	Boundary Wall	1322.70m	1133 m	105	1238 m	85.66%
5	Office cum Lab Building	1 no	1 no	0	1	
6	Workshop Building	1 no	1 no	0	1	
7	Generator / Changing House	1 no	1 no	0	1	
8	Sump Well	1 no	0	15%	15%	
9	Sludge Drying Bed	1 no	0	1 (Excavation, Brick work etc.)	1 (excavation)	Brickwork in progress

Table 16: Physical Progress in Production of Precast Items at Katahari:

Physical Progress till December 2016						
			Progress			
S.N.	Description	Unit	Up to Nov 2016 (no)	This Month (no)	Total to Date (no)	Remarks
1	Precast Slab	No	90780	625	91405	
2	Precuts	No	11209	0	11209	
3	Kerb Stone	No	23135	0	23135	
4	Manhole	No	2200	0	2200	
5	Sewer Inlet	No	1649	425	2074	
6	House Connection Chamber	No	1346	0	1346	

Table 17: Physical Progress in Production of RCC Pipes at Itahari

:

Physical Progress till December 2016						
			Progress			
S.N.	Description	Diameter (mm)	Up to Nov 2016 (no)	This Month (no)	Total to Date (no)	Remarks
1	RCC Pipe	200	2,123	0	2,123	
2	RCC Pipe	300	328	0	370	
3	RCC Pipe	350	216	0	216	
4	RCC Pipe	400	370	0	370	
5	RCC Pipe	450	84	0	84	
6	RCC Pipe	500	551	0	551	
7	RCC Pipe	600	963	0	963	
8	RCC Pipe	700	1,296	0	1296	
9	RCC Pipe	900	278	0	278	
10	RCC Pipe	1000	1011	0	1,019	
11	RCC Pipe	1600	373	0	373	
	Total		7,643	0	7,643	

Contractor's Manpower

Table 18: Contractor's key staffs in December 2016:

Designation	No	Remarks
Project / Contract Manager	1	
Planning Engineer/Construction Engineer	1	
Construction Engineer	1	
Site Engineers	5	
Quality Control Manager	1	
Office/Bill Engineer	1	
Junior Engineer	10	
Sub Overseers	6	

Safety Manager / Senior Site Supervisor	1	
Accountant / Office Manager	1	
Lab Assistant	3	
Store Keeper	4	
Light Drivers	6	
Machine Operator	14	
Site Supervisor	5	
Other Supporting Staff	18	
Skilled Labor at Site	>130	
Unskilled Labor at Site	>350	

Contractor's Equipment:

Table 19: Contractor's Equipment: At Judi camp

Equipment	No	Remarks
Excavator	6	
Back Hoe JCB	<u>5</u>	
Grader	1	
Crane / Teller	1	
Water Tanker	2	
Tractor	7	
Tipper	4	
Light Vehicle	2	
Motorbike	10	
Kerb Stone Machine Set	1	
Generator	4	
Welding Machine	3	
Diesel Tank with Pump	1	
Stand Drill Machine	1	
Gas Cutter Set	1	
Pipe Cutter	1	
Hand Grinder	1	
Plate Compactor	2	
Monkey Jumper	1	
Concrete Batching Plant	1	
Electric Vibrator	3	
Bar Bending Machine	3	
Bar Cutter Machine	3	
Transit Mixer	0	
Concrete Mixer (Hydraulic)	2	
Concrete Mixer (Manual)	2	
Asphalt Concrete Plant	1	
Asphalt Paver Machine	1	

8 DETAILS OF SAFEGUARD ACTIVITIES (SOCIAL, ENVIRONMENTALANDRESETTLEMENT ACTIVITIES AND ISSUES)

8.1 Social Issues

8.1.1 OPERATIONAL GUIDE LINES FOR COMMUNITY MOBILIZATION AND IMPLEMENTATION OF CDP

Visit, Interaction and Consultation with Community People

37. Social Development Specialist (SDS) of the DSC is closely monitoring the social issues resulted due to the project activities. Visiting and interacting with people, Tole Lane Organizations (TLOs) and formal and informal consultation meetings are going on in this regard.

The project is regularly disseminating the information and message to community people about the project features, its purpose, methods of use and functionality of infrastructure under construction by the project through such consultation meetings. These meetings are fruitful to provide prior information regarding the project construction activities before execution at the community level. It is an appropriate platform to interact and make dialogue between 4 Cs (The Client, Consultant, Contractor and Community) about the project features, prime objectives, purpose, work methodology and potential threats/ cautions to be adopted during the project implementation.

The visits, meetings and consultations with community people at TLOs have provided many opportunities to obtain people's views and perception towards the project. Community people of those particular localities used to discuss extensively in the project features and have been provided some suggestions for efficient carryover of the project components and assured cooperation and coordination in the project execution in their localities.

Social Development Specialist (SDS)/ DSC along with of PIU, NGO staffs have been actively participated in the meetings. SDS/DSC as usual facilitate the consultation meetings, support to prepare meeting minutes and obtain decisions.

Apart from of this, many field visits and observations with community are also important to disseminate project message and monitor project features in the community. Monitoring visits along with Project Manager (PM), TL/DSC and TL/CDP to the core project area, community development program area and construction sites have been beneficial to make insight to the project progress, its effectiveness and challenges.

• SAFEGUARD DESK

38. A Safeguard Desk established in the project has been effective in planning, monitoring and follow up of all social development/ safeguard issues including the resettlement plan. It has been started as a functional mechanism consisting of PIU, NGO and DSC for this purpose. The desk consists of the Social Development Chief of PIU, Team Leader of CDP/ NGO and SDS of DSC with close consultation and guidance of PM/ PIU. It is in compliance with the Aide Memoire of last ADB Mission (21 April-12 May 2014). It is decided that the desk will review, update and discuss the progress, issues, constraints and challenges of social aspects, Community Development Program and implementation of resettlement plan as well as monitoring of social development activities.

Tot on Gender and Social Inclusion (GESI) Mainstreaming

39. The project has been envisaged a 'Training of Trainers (ToT) on GESI Mainstreaming' for Biratnagar Sub Metropolitan City (BSMC) Office and STIUEIP project staff. The Aide Memoir Report of the ADB Review Mission has also noted about the training to be conducted in Biratnagar for the staff of municipality and related agencies. The Mission has recommended for conducting GESI training relating to urban infrastructure development to staff of municipality, municipal steering committee, PIU, local stakeholder agency and make them accountable for the better results. In line with this, the project is going to conduct Gender and Social Inclusion (GESI) Sensitization Training when it is approved. The revised ToT has been submitted to PIU, STIUEIP, Biratnagar incorporating the comments from PMSC and PCO.

Safeguard desk members discussed and reviewed the proposed 'ToT on GESI Mainstreaming' proposal. Social Development Specialist (SDS) of DSC has reviewed the detail proposal and adjusted budget accordingly for the 'Training of Trainers (ToT)' model. The training arrangement will be decided after the approval of this proposal by the project authority. Primarily it will be a 5 days training focusing mainly on Gender and Social inclusion Action Plan (GESIAP) comprising other project elements. About 35 participants from Biratnagar Sub Metropolitan City (BSMC) office and project staffs will participate in the training.

Update of Small Facilities Construction and other Activities in CDP/STIUEIP

40. The latest safeguard desk meeting has reviewed all ongoing and completed small facilities infrastructure and other activities implemented under the Community Development Program (CDP), a component of STIUEIP. It provided a common understanding and status information of infrastructures and activities under the CDP program to all safeguard desk members.

A glimpse of community development program has been obtained by the presentation in the appraisal and interaction meeting. Total 7,417.36 m. roads and 13,246.32 m. drains are under construction through small facilities infrastructure by CDP/STIUEIP. Regarding on the household toilet, total 458 nos. such toilets has been built by May 2015. Similarly 10 hand pumps have been installed, 45 hands pump platforms built and 5 public toilets are complete.

Employment in Project

41. The core activities of the project i.e. sewerage pipe laying, drain construction and road/ lane improvement provided employment to about 270 in a day this month. The employed human resources varied from skilled engineer/ project manager to general labor, supervisor, (sub) overseers and mechanics. However, a very few women (16%) are working in the construction activities as skilled and unskilled labor but they are paid equal to men for similar type of work. Three women Assistant Sub-Engineers are also working at construction sites after completing OJT (on the job training) successfully at the same sites from different CTEVT affiliated institutes of nearby districts. The contractor has been suggested to increase the work opportunity to women in different types of works.

General

42. Sewer/ Drainage lines are being laid in the public rights of way (RoW). During construction, if any trees or crops or structures demolished, it shall be properly addressed with compensation. Private individuals or shopkeepers will also be looked into if their livelihood is affected by the disturbance during constructions/ pipe laying works.

Apart from this, the project did not encounter any resettlement or re-location and any compensation issue..

9KEY ISSUES AND REMARKS/REASONFOR DEVIATION (IFANY) AFFECTINGPROGRESS

- 43. Following are the key issues affected in progress:
 - Disturbance from existing water supply pipe lines network, under-ground cables, electric poles etc.

10 WORK PLAN FOR THE NEXT MONTH

44. Following are the Contractor's works in the next month (Please refer to the contractor's progress report for quantitative plan works for next month) the revised work program shall be submitted after the approval of Variation order no-03 as discussed/agreed between three parties-3C.

- Road side drain construction
- Road Works at R2 Road and other Roads
- Sewer line construction
- WWPP
- Maintenance work as per instruction/required.

ANNEX2: PHOTOGRAPHS – DECEMBER 2016

Concreting of Cutting edge at Sump Well

Kerbstone and Gutter curing at R2 Road

Page | 35 Secondary Towns Integrated Urban Environmental Improvement Project (STIUEIP), Biratnagar

Repair and maintenance water supply pipe

Page | 36 Secondary Towns Integrated Urban Environmental Improvement Project (STIUEIP), Biratnagar

RCC road side drain at R3 road

Page | 37 Secondary Towns Integrated Urban Environmental Improvement Project (STIUEIP), Biratnagar

Brick Masonry road side drain at R28 road

Page | 38 Secondary Towns Integrated Urban Environmental Improvement Project (STIUEIP), Biratnagar

Dismantle Existing RCC Slab and Brick Masonry drain at R3 road

Brick Masonry road side drain at R3 road

Page | 40 Secondary Towns Integrated Urban Environmental Improvement Project (STIUEIP), Biratnagar

ANNEX-6: MINUTES OF MEETING - DECEMBER, 2016

ANNEX-7

: LABORATORY TEST RESULTS OF DECEMBER, 2016

SECONDARY WNS INTEGRATED URABAN ENVIRONM TAL IMPROVEMENT PROJECT BIRATNAGAR SON METROPOLITANT City STIUEIP

Monthly Laboratory Testing Report

(For The Month OF DECEMBER 2016)

Consultants:SMEC-Brisbane-AQUA-CEMAT-BDA

Contractors: CTCE- KALIKA J/V

			Total No. of Test		Test Performed	for this month	1	Total No. of Test	
S. No.	Description of Material	Type of test	upto previous month	No. of Tests	Passed	Failed	Retest Recommended	upto This month	Remarks
1	Granular Material/Gravel material	Sieve analysis	43	37	37	0		80	
2	SUB GRADE Preparation	MDD & OMC	12	4	4	0		16	
	asPere Specifacation	Field density	126	138	138	0		264	
		C.B.R	14	4	4	0		18	
3	BRICK WORK	Water Absorption	195	0	0	0		195	
	Required Test	Compressive Strength	2221	300	300	0		2521	
4	Masonry Mortar (CM 7.05)	Compressive strength	1989	1068	1068	0	Q-III-II	3057	
5	CONCRETE AGGREGATE Coarse aggregate (20 mm)	Sieve analysis (20 mm)	282	28	28	0		310	
		LAA	198	25	25	0		223	
		Specific Gravity	16	0	0	0		16	
		FI	211	25	25	0		236	
		ACV	225	25	25	0		250	
	Fine aggregate (Sand)	Sieve analysis	250	44	44	0		294	
6	CONCRETE MIX DESIGN	Concrete mix Design	76	0	0	0		76	
	ConcreteM15/20,M20/20	Compressive strength	456	0	0	0		456	
	M25/20,&M30/20	Slump test	73	0	0	0		73	

SECONDARY WNS INTEGRATED URABANENVIRONI. NTAL IMPROVEMENT PROJECT BIRATNAGAR Sub-Metropolitant City STIUEIP

Monthly Laboratory Testing Report

(For The Month OF DECEMBER 2016)

Consultants:SMEC-Brisbane-AQUA-CEMAT-BDA

Contractors: CTCE- KALIKA J/V

S. No.	Department of Material	T	Total No. of Test		Test Performed	d for this mont	1	Total No. of Test	
5. NO.	Description of Material	Type of test	upto previous month	No. of Tests	Passed	Failed	Retest Recommended	upto This month	Remarks
7	CEMENT Required Test								
	OPC Cement	Setting time	164	30	30	0		194	
		Normal Consistency	164	30	30	0		194	
8	CONCRETE								
	Work Mix Test M15,M20,M25,M30	Compressive strength	9301	1044	1044	0		10345	
9	REINFORCEMENT	Required Test							
	Reinforcement tore steel	As per Specifacation	80	0	0	0		80	
10	PAVEMENT MATERIALS								
	Sub Base Materials	Sieve analysis	31	45	45	0		76	
		MDD & OMC	11	2	2	0		13	
		CBR	7	2	2	0		9	
		Field density	102	66	66	0		168	
11	CS Base	Sieve analysis	60	12	12	0		72	
	Crushed Stone Base	MDD & OMC	8	1	11	0		9	
	Material Laying	C.B.R	6	1	1	0		7	
		FI & C.Ratio	64	12	12	0		76	
		LAA	65	12	12	0		77	
		sss	10	9	9	0		19	
		AIV	64	12	12	0		76	
		Field Density & OMC	125	24	24	0		125	149

SECONDARY

WNS INTEGRATED URABAN ENVIRON .NTAL IMPROVEMENT PROJECT BIRATNAGAR Sup-Metropolitant City STIUEIP

Monthly Laboratory Testing Report

(For The Month OF DECEMBER 2016)

Consultants:SMEC-Brisbane-AQUA-CEMAT-BDA

Contractors: CTCE- KALIKA J/V

S. No.	Description of Material	Type of test	Total No. of Test		Test Performed	for this mont	n	Total No. of Test	
	2 con paon of material	Type of test	upto previous month	No. of Tests	Passed	Failed	Retest Recommended	upto This month	
12	ASHPHALT CONCRETE	Sieve analysis	9	0	0	0		9	
	Combine Mixed	FI	8	0	0	0		8	
		ACV	8	0	0	0		8	
	Individual Ca&FA Test Mix Design	LAA	8	0	0	0		8	
	1.	Sp gravity	4	0	0	0		4	
13	BITUMEN TEST	Penetration at25.c	2	0	0	0		2	
	80/100 Bitumen	Softeing point(ring ball)	2	0	0	0	1	2	
	As per DORbook section	Flash point/Fire Point	2	0	0	0		2	
	600 Table 6.14/is 73	Ductility at25.c	2	0	0	0		2	
-		Specific at 25.c	2	0	0	0		2	
		Water Content	2	0	0	0		2	
		Loss on Heating for 5 hrs	2	0	0	0		2	
		Pen-of residue afte loss on Heating	2	0	0	0		2	
		Solubility in tricloroethylene	2	0	0	0		2	
14	Humpipe Test	Three Edge Bearing Load Test	7	0	0	0			200mm to 1600mm 1 eac
15	MARSHALL MIX DESIGN	WEARING COURSE	1	0	0	0		1	
6	Marshall Stability Test	Bulk density	60	0	0	0		60	
		Stability	60	0	0	0		60	
		Flow	60	0	0	0		60	
		Air voides	60	0	0	0		60	

SECONDARY WNS INTEGRATED URABAN ENVIRON NTAL IMPROVEMENT PROJECT BIRATNAGAR Sub-International City STIUEI

STIUEIP

Monthly Laboratory Testing Report

(For The Month OF- DECEMBER 2016)

Consultants:SMEC-Brisbane-AQUA-CEMAT-BDA

Contractors: CTCE-KALIKA J/V

S. No.	Description of Material	Type of test	Total No. of Test		Test Perforn	ned for this mont	h	Total No. of Test	
22.37	2000 pton of material	Type of test	upto previous month	No. of Tests	Passed	Failed	Retest Recommended	upto This month	Remarks
		Bitumen extraction	20	0	0	0		20	
		Voids in Mineral Agg	60	0	0	0		60	
		Job mix in AC Plant	22	0	0	0		22	
17	BITUMEN SPREAD TEST								
	Prime coat	Application rate	20	0	0	0		20	
	Tack coat	Application rate	10	0	0	0		10	
18	Machines/Equipment Caliberation of compressive	1000KN Manuali	2	0	0	0		2	
	Testing machine	500 KN Manuall	2	0	0	0		2	
	C.B.R Machine	50KN/30KN	2	0	0	0		2	
	Marshall Stability Machine	50KN/25KN	2	0	0	0		2	
19	MISCELLANEOUS								
	G.I Wire(Gabion Boxes)		5	0	0	0		5	
	Factory Test Report of Cement		8	0	0	0		8	
	Factory Test Report of Iron Steel		4	0	0	0		4	
	Factory Test Report of 80/100 Bitumen		2	0	0	0		2	
	Factory Test Report of UPVC/HDP Pipe		2	0	0	0		2	
	UPVC/HDP Pipe Test Result		2	0	0	0		2	
timum I	= Max Dry Dennsity Moisture Content	LAA = Los Angeles Abrasio SE=Sand Equivqlent				nte Impact Value Mix Formula			hing Ratio
V = Agg	lium Sulphate Soundness gregtae Crushing Value nia Bearing Ratio	SMEC-Brisbane-AQUA-B Approved by C.S.E Checked by A.C.S.E Consultant Reps	DA-CEMAT			Submitted by Prepaid by	ALIKA J/V by Project Man Q.C Manager actors Reps	ager /	

Secondary Town Integrated Urban Environmental Improvement Project Biratnagar Sub-Metropolitan city

Contract Package: STIUEIP/W/BRT/ICB-01

DAILY WEATHER RECORD

FOR THE MONTH OF December 2016

Date			V	VEATHER Re	cord		Temp.c		
	Sunny	Foggy	Cloudy	Morning Rain HRS	Night Rain Hrs.	Day Rain Hrs.	9:00 AM	5:00 PM	Rain Fall MM
1		Foggy					21.2	19.6	
2	-	Foggy					22.6	20.2	
3		Foggy					22.4	21.4	
4		Foggy					19.5	22.6	
5		Foggy					19.1	20.5	
6		Foggy					20.2	19.4	
7	14	Foggy			L. V. L. L. W.		19.8	20.1	
8		Foggy	1				16.9	20.4	
9		Foggy					19.8	17.2	
10		Foggy					18.4	17.2	1
11		Foggy			4		21.2	17.4	
12		Foggy					14.8	16.2	
13		Foggy					14.2	18.2	
14		Foggy			1 1 1		14.1	18.1	
15	Sunny				** Transition ** - 1		17.2	19.4	
16	Sunny				1		18.1	19.6	
17	Sunny						19.2	18.8	
18		Foggy					20.2	19.2	
19		Foggy					18.8	17.5	
20		Foggy					19.2	18.6	
21		Foggy					19.8	18.8	
22		Foggy		4 5 4			20.2	19.4	+ 4
23		Foggy					20.4	19.6	
24		Foggy					19.8	19.2	
25		Foggy					19.4	19.2	
26		Foggy					19.8	19.2	
27	Sunny						19.5	20.2	
28	Sunny						18.6	22.2	
29	Sunny				-		19.2	20.4	
30	Sunny					*' - 1	18.8	19.8	
31	Sunny						20.2	19.6	

SMEC-Brisbane-AQUA-CEMAT-BDA

Approved By C.S.E

Record Checked By A.C.S.E

Consultant Reps

CTCE-KALIKA J/V

Submitted By Project Manager

Record Reported By O.C. Manager of Contractor Reps

SECONDARY TOWNS INTEGRATED URABAN ENVIRONMENTAL IMPROVEMENT PROJECT

Biratnagar Sub-Metropolitant City

P.G-1

S.N.	DESCRIPTION / SOURCE	LAB		Grain Siza	Distributio	on	FI	LAA	ACV	REMARKS
	BEGGINI HON TOOKOE	REF. NO.	25	20	10	4.75	%	%	%	INCIMARK
1		MR 253	100	96.46	34.19	8.04	13.15	31.36	19.8	Aggregates
2		MR 254	100	97.32	30.52	5.40	12.74	32.80	19.9	Source
3	From Contractor Yard Stock	MR 255	100	97.46	29.56	5.44	12.15	32.68	18.7	Om shree
4	From Contractor Fard Stock	MR 256	100	98.14	32.74	4.78	11.74	32.84	18.9	CRUSHER
5		MR 257	100	97.34	32.10	5.36	11.44	32.60	18.8	
6		MR 258	100	97.00	33.80	4.40	12.83	32.68	18.8	PLANT
7		MR 259	100	96.90	30.72	3.74	12.52	32.24	18.7	
8	P. 2 Line Compands Work	MR 260	100	98.56	31.38	3.68	13.04	32.52	18.8	
9	R-3 Line Concrete Work	MR 261	100	98.68	38.28	4.00	13.41	32.60	19.0	
10		MR 262	100	98.48	34.32	3.32	13.04	32.00	19.2	
, ,	Section 900:IS 383-1970 Required		100	95-100	25-55	0-10	Less 15%	Less 35%	Less 30%	

Test Checked by A.C.S.E

Consultant Reps

Test conducted by Q.C Manager

S.N.	DESCRIPTION / SOURCE	LAB		Grain Siza	a Distributi	ion	FI	LAA	ACV	
	- Control (Green Green Control	REF. NO.	25	20	10	4.75	%	%	%	REMARKS
11	RANI LINE Concrete work	MR 263	100	98.41	35.31	3.94	13.56	31.76	19.4	Aggregates
12		MR 264	100	98.00	31.05	3.67	13.67	31.56	19.3	Source
13		MR 265	100	96.98	31.42	3.34	12.52	31.68	18.9	Om shree
14	R-3 LINE Concrete work	MR 266	100	97.88	31.35	3.23	13.22	31.56	19.3	CRUSHER
15		MR 267	100	98.59	39.64	3.60	12.96	31.80	19.3	
16		MR268	100	98.84	42.40	2.86	13.09	31.44	19.0	PLANT
17	R-22 LINE Concrete Work	MR 269	100	97.57	42.34	3.81	12.78	31.36	18.6	
18		MR 270	100	98.21	44.43	2.82	13.00	31.12	19.4	
19	R-21 Line Concrete work	MR271	100	97.92	34.38	3.24	13.89	31.44	18.6	
20	and deficite work	MR 272	100	98.28	37.31	3.35	12.56	31.32	18.9	
, S	ection 900:IS 383-1970 Required		100	95-100	25-55	0-10	Less 15%	Less 35%	Less 30%	
SMEC-	Brisbane-AQUA-CEMAT-BDA				CTCE-KA	LIVA IAI				

Approved by CSE

Test Checked by A.C.S.E

Consultant Reps

CICE-KALIKA J/V

Submitted by Project Manager

Test conducted by Q.C Manager

SECONDARY TOWNS INTEGRATED URABAN ENVIRONMENTAL IMPROVEMENT PROJECT Biratnagar Sub-Metropolitant City P.G-3 Summery of Concrete Crushed Aggregate 20mm down For The Month of NOVEMBER 2016 LAB Grain Siza Distribution FI LAA ACV

S.N.	DESCRIPTION / SOURCE	LAB		Grain Siza	Distributi	ion	FI	LAA	ACV	
		REF. NO.	25	20	10	4.75	%	%	%	REMARKS
21	R-21 Line Concrete work	MR 273	100	98.06	32.56	3.66	12.07	32.92	19.2	Aggregates
22		MR 274	100	97.80	35.26	3.28	13.33	32.64	19.0	Source
23	RANI LINE Concrete work	MR 275	100	97.57	35.98	3.23	12.93	32.84	19.0	Om shree
24		MR 276	100	98.20	36.16	4.12	13.37	32.24	18.5	CRUSHER
25		MR 277	100	98.11	41.67	2.77	13.44	33.20	19.7	
26	R-27 Line Concrete work	MR 278	100	97.33	39.02	2.91	12.74	32.88	20.1	PLANT
27	The solution work	MR 279	100	96.81	37.34	4.19	13.85	32.68	19.8	
28		MR 280	100	98.03	44.39	2.51	13.07	33.04	19.9	
29	From Contractor stock YAARD	MR281	100	98.10	45.14	2.83	13.59	33.20	19.6	
30	TARKE	MR 282	100	98.18	40.85	3.35	13.70	33.24	19.8	
1	Section 900:IS 383-1970 Required		100	95-100	25-55	0-10	Less 15%	Less 35%	Less 30%	

SMEC-Brisbane-AQUA-CEMAT-BDA

Approved by CSE

Test Checked by A.C.S.E

Consultant Reps

CTCE-KALIKA J/V

Submitted by Project Manager

Test conducted by Q.C Manager

SECONDARY TOWNS INTEGRATED URABAN ENVIRONMENTAL IMPROVEMENT PROJECT

Biratnagar Sub-Metropolitant City

P.G-4

	DESCRIPTION / SOURCE	LAB	(Grain Siza	Distributio	n	FI	LAA	ACV	REMARKS
S.N.	DESCRIPTION / SOURCE	REF. NO.	25	20	10	4.75	%	%	%	
31		MR283	100	97.19	38.19	4.16	13.07	33.16	19.7	Aggregates
32		MR 284	100	98.00	39.92	1.31	13.52	33.52	20.1	Source
33		MR 285	100	97.10	39.93	2.32	12.85	33.68	20.2	Om shree
34		MR 286	100	97.90	32.35	3.26	12.78	33.48	20.1	CRUSHER
35	FROM CONTRACTOR STOCK YARD	MR 287	100	98.46	38.59	4.11	13.30	31.32	20.1	
36		MR 288	98.15	98.15	37.75	3.31	13.96	31.60	19.6	PLANT
37		MR 289	100	96.99	34.16	3.26	13.41	31.24	19.4	
38		MR290	100	97.10	36.01	4.48	13.74	31.12	19.2	
39	*	MR 291	100	97.61	40.75	3.31	13.48	32.96	18.9	
40		MR 292	100	98.05	41.82	4.42	13.89	32.64	18.8	
1	Section 900:IS 383-1970 Required		100	95-100	25-55	0-10	Less 15%	Less 35%	Less 30%	-

Approved by CSE

Test Checked by A.C.S.E

Consultant Reps

Submitted by Project Manager

Test conducted by Q.C Manager

					ub-Metrop	Charles State Stat				P.G-4
Su	mmery of Concrete Crushe	d Aggre	gate 20	mm do	wn For	The Mo	onth of N	NOVEME	BER 201	6
5.N.	DESCRIPTION / SOURCE	LAB		Grain Siza	Distributi	on	FI	LAA	ACV	DEMARK
		REF. NO.	25	20	10	4.75	%	%	%	REMARK
41		MR 293	100	98.07	38.70	2.91	13.44	33.08	19.1	Aggregates
42		MR 294	100	97.32	35.21	3.81	13.04	32.52	18.9	Source
43		MR 295	100	98.02	36.95	4.10	13.44	33.08	18.8	Om shree
44	FROM CONTRACTOR STOCK YARD	MR 296	100	97.69	38.21	4.23	13.89	32.72	18.7	CRUSHER
45	a see a	MR 297	100	96.76	40.31	4.72	13.44	32.16	19.3	
46		MR 298	98.15	97.01	37.63	3.89	13.63	32.24	19.3	PLANT
47		MR 299	100	96.07	40.24	5.36	13.11	32.40	19.3	
48		MR 300	100	96.38	32.63	4.65	13.67	32.58	19.4	
49 s	sample from S-9 line concrete work	MR 301	100	99.27	44.13	2.88	13.63	32.38	19.0	
50 s	sample from R-28 Line Concrete work	MR 302	100	97.71	43.05	5.74	13.89	32.40	19.0	
i.	Section 900:IS 383-1970 Required		100	95-100	25-55	0-10	Less 15%	Less 35%	Less 30%	
Appr Test	C-Brisbane-AQUA-CEMAT-BDA oved by CSE Checked by A.C.S.E sultant Reps			è		d by Proje	ect Manage Q.C Mana		11/	

SECONDARY TOWNS INTEGRATED URABAN ENVIRONMENTAL IMPROVEMENT PROJECT

	Summary of Fine Cond		tnagar Si regates		FOI	RTHE	MONT	H OF D	ECE	MBER 2016
		LAB			Grain Si	za Distri	bution			REMARKS
.N.	DESCRIPTION / LOCATION	REF. NO:	10	4:75	2.36	1.18	0.6	0.3	0.15	
1	From R37 Line	291	100.00	93.29	78.45	59.72	44.88	20.85	6.36	source
2	From R37 Line	292	100.00	92.57	77.70	58.45	42.57	20.27	7.09	om shree
3	From R-21 Line	293	100.00	92.48	79.74	60.13	43.46	23.53	9.15	Crusher Plant
4	From R-21 Line	294	100.00	94.46	81.54	61.23	43.69	21.85	8.00	Chisang Moran
5	From R-21 Line	295	100.00	94.86	80.39	60.77	44.69	20.26	6.75	
6	From R-21 Line	296	100.00	95.70	79.14	61.59	45.36	21.85	5.96	
7	From R-21 Line	297	100.00	95.11	76.87	59.28	44.30	21.82	6.51	
8	From R- 5 Line	298	100.00	95.09	76.38	58.28	41.10	18.40	5.52	
9	From R- 5 Line	299	100.00	94.89	76.45	58.71	42.90	20.32	6.77	
10	From R- 5 Line	300	100.00	95.59	75.93	58.31	42.03	18.98	6.44	
11	From R- 5 Line	301	100.00	94.19	77.42	57.10	40.97	21.29	7.74	
12	From R- 5 Line	302	100.00	95.52	78.62	58.62	40.69	20.34	7.24	
13	From R- 3 Line	303	100.00	95.74	78.01	57.45	40.78	19.15	7.09	2
14	From R- 3 Line	304	100.00	94.39	77.54	58.95	42.81	18.25	5.61	
15	From R- 3 Line	305	100.00	95.27	77.45	58.55	42.55	17.82	5.45	
16	From R- 3 Line	306	100.00	96.14	77.19	57.89	44.56	18.95	6.32	
17	From R- 3 Line	307	100.00	95.76	76.33	56.54	42.76	18.02	6.01	
18	From S-9 Line	308	100.00	93.80	76.82	57.66	41.61	16.79	5.47	
19	-do-	309	100.00	93.80	75.58	58.53	40.70	15.50	4.26	
20	From S-9 Line	310	100.00	94.07	78.39	61.44	45.76	19.07	5.93	
	ifacation Limit is 383-1970 Zone	-2	100-100	90-100	75-100	55-90	35-59	8-30	0-10	/ 包括普

Approved by C.S.E Test Checked by A.C.S.E Consultant Reps

Submitted by Project Manager Test Conducted by Q.C Manager Contractor Reps

	Summary of Fine Cond	rete Agg	regates	Sand	FO	R THE	МОМТ	H OF I	DECE	MBER 2016
.N.	DESCRIPTION / LOCATION	LAB				iza Distr				REMARKS
		REF. NO:	10	4.75	2.36	1.18	0.6	0.3	0.15	Constant of the Constant of th
41	From Contractor Yard	331	100.00	91.12	81.38	63.04	46.42	20.34	7.45	source
42	From Contractor Yard	332	100.00	91.33	82.95	64.16	47.11	20.52	7.23	om shree
43	From Contractor Yard	333	100.00	91.09	81.90	62.93	46.26	19.54	6.03	Crusher Plant
44	From Contractor Yard	334	100.00	94.34	80.75	59.25	46.04	19.62	6.42	Chisang Morang
					198					
		Val.					2			
						-, -				
	* 1									
,										
					1					
Speci	facation Limit is 383-1970 Zone -	2	100-100	90-100	75-100	55-90	35-59	8-30	0-10	
ME	C-BRISBANE-AQUA-CEMAT-B oved by C.S.E Checked by A.C.S.E			,	Submit		oject Ma by Q.C I		6	

where were the same t

SECONDARY TOWNS INTEGRATED URABAN ENVIRONMENTAL IMPROVEMENT PROJECT Biratnagar Sub-Metropolitant C.ly FOR THE MONTH OF DECEMBER 2016 Summary of Fine Concrete Aggregates Sand

	Summary of Fine Cond			0	Grain Si	za Distri	bution			REMARKS
.N.	DESCRIPTION / LOCATION	LAB REF. NO:	10	4.75	2.36	1.18	0.6	0.3	0.15	
21	From R37 Line	311	100.00	93.00	78.19	60.91	46.91	19.75	7.41	source
22	From S-9 Line	312	100.00	92.98	78.51	61.57	48.76	19.83	7.85	om shree
23	From R-7 Line	313	100.00	92.74	78.23	61.29	47.98	20.56	8.06	Crusher Plant
24	From R-7 Line	314	100.00	94.80	79.60	62.40	48.40	20.00	8.00	Chisang Moran
25	From R-7 Line	315	100.00	95.10	80.00	62.86	48.98	19.59	6.94	
26	From R-7 Line	316	100.00	94.74	79.35	61.54	47.37	18.62	6.48	
27	From R-7 Line	317	100.00	95.18	79.52	61.45	46.99	18.88	7.23	4.
28	From R-7 Line	318	100.00	95.49	79.10	61.07	47.13	18.85	6.56	
29	WWTP Boundry wall	319	100.00	95.98	80.32	60.24	47.39	19.28	6.83	
30	WWTP Boundry wall	320	100.00	95.58	79.52	59.84	47.39	19.68	7.63	
31	WWTP Boundry wall	321	100.00	94.72	78.05	58.04	46.75	19.51	6.10	
32	WWTP Boundry wall	322	100.00	94.51	77.25	58.43	46.27	19.61	6.27	
33	WWTP Boundry wall	323	100.00	94.07	76.28	57.71	44.66	18.56	5.53	
34	WWTP SLUM WELL	324	100.00	93.12	76.52	58.70	44.94	19.03	6.07	
35	WWTP SLUM WELL	325	100.00	94.65	76.54	57.61	44.86	19.75	7.00	
36	WWTP SLUM WELL	326	100.00	92.72	78.16	62.14	48.06	20.39	6.31	
37	WWTP SLUM WELL	327	100.00	93.40	78.68	62.94	50.25	20.30	7.11	
38	WWTP SLUM WELL	328	100.00	93.20	78.64	62.62	49.51	23.30	8.25	
39	From Contractor Yard	329	100.00	93.43	76.77	61.62	48.89	22.22	7.07	
	From Contractor Yard	330	100.00	93.91	77.66	64.97	51.27	24.87	7.61	
40	ifacation Limit is 383-1970 Zone		100-100		75-100	55-90	35-59	8-30	0-10	188
Spec	inacation Limit is 303-1370 Zone		2018 /118	11	CTCF-	CALIKA .	J/V			1 Note to

SMEC-BRISBANE-AQUA-CEMAT-BDA

Approved by C.S.E

Test Checked by A.C.S.E Consultant Reps

CTCE-KALIKA J/V

Submitted by Project Manager Test Conducted by Q.C Manager **Contractor Reps**

SUMMARY OF CUBE COMPRESSIVE STRENGTH TEST M20/20 SLAB CASTING WORK MIX

FOR THE MONTH OF DECEMBER 2016

S.N.	Lab Ref No.	Date of Casting	Deatails of Mix	Location	Ra	tio by VOL	UME		M	aterials	Cube Cru	shing ,N/mm2	Remarks
				Structure	Water	Cement	Sand	Aggregate	Cement Brand	Aggregate/Sand	7 days	28-Days	
1	MR 151	21/11/2016	M20 Work mix	SLAB YARD	0.50	1	2	3.5	SHIVAM	Om shree C/plant	16.7	22.2	
2	MR152	21/11/2016	M20 Work mix	SLAB YARD	0.50	1	2	3.5	SHIVAM	Om shree C/plant	16.4	22.4	
3	MR 153	23/11/2016	M20 Work mix	SLAB YARD	0.50	1	2	3.5	SHIVAM	Om shree C/plant	16.1	22.4	
4	MR 154	24/11/2016	M20 Work mix	SLAB YARD	0.50	1	2	3.5	SHIVAM	Om shree C/plant	16.6	21.5	
5	MR 155	26/11/2016	M20 Work mix	SLAB YARD	0.50	1	2	3.5	SHIVAM	Om shree C/plant	16.4	22.2	
6	MR 156	30/11/2016	M20 Work mix	SLAB YARD	0.50	1	2	3.5	SHIVAM	Om shree C/plant	15.7	22.1	
7	MR 157	1/12/2016	M20 Work mix	SLAB YARD	0.50	1	2	3.5	SHIVAM	Om shree C/plant	16.0	22.4	
3	MR 158	1/12/2016	M20 Work mix	SLAB YARD	0.50	1	2	3.5	SHIVAM	Om shree C/plant	16.1	22.6	
9	MR 159	1/12/2016	M20 Work mix	SLAB YARD	0.50	1	2	3.5	SHIVAM	Om shree C/plant	16.7	21,9	
0	MR 160	2/12/2016	M20 Work mix	SLAB YARD	0.50	1	2	3.5	SHIVAM	Om shree C/plant	15.9	22.1	
1	MR 161	3/12/2016	M20 Work mix	SLAB YARD	0.50	1	2	3.5	SHIVAM	Om shree C/plant	16.0	22.1	
2	MR 162	3/12/2016	M20 Work mix	SLAB YARD	0.50	1	2	3.5	SHIVAM	Om shree C/plant	16.4	22.5	
3	MR163	4/12/2016	M20 Work mix	SLAB YARD	0.50	1	2	3.5	SHIVAM	Om shree C/plant	16.7	22.4	

Specifacation Limit Table For M20/20 on 7 days Age Min 67% of Total Compressive Strength

Min Required

13.4

SMEC-Brisbane-AQUA-BDA

Approved by Construction Supervision Engineer/CSE

Test checked by A.C.S.E

Consultants Reps

CTCE-KALIKA J/V

Submitted by Project Manager Test conducted by Q.C Manager

SECONDARY TOWNS IN EGRATED URABAN ENVIRONENTAL IMPROVEMENT PROJECT

Biratnagar Sub-Metropolitant City
MONTHLY Test Result Summary Sheet For The Month of

DECEMBER 2016

STIUEIP

SUB BASE (Process Control)

According to Part 2.Section 6A-Technical Specifacations&DOR Specifacation Section 1201(3)C Physical Requirement

P-9->1

SN	LAB Ref	Date Tested	Location/ Chainage/Station				ling sie					Lab.	Soaked CBR	Lab. MDD	Remarks
No	NO		3	63	37.5	20	10	5	2.360	1.18	0.075	(%)	(%)	(g/cc)	, comando
1	51	1/12/2016	R2 Road CH:3+480 to 3+690	100	83.86	60.75	46.92	36.39	28.09	18.91	5.40	9.50	42.00	2.26	
2	52	1/12/2016	R2 Road CH:3+480 to 3+690	100	80.72	58.27	45.27	36.00	27.55	18.23	5.82				
3	53	4/12/2016	R2 Road CH:3+690 to 3+770	100	80.17	58.62	46.94	31.02	25.37	19.54	6.63	9.25	40.00	2.22	
4	54	5/12/2016	R2 Road CH:3+400 to 3+450	100	83.97	63.91	52.27	37.20	27.49	20.04	7.72				
5	55	5/12/2016	R2 Road CH:3+450 to 3+500	100	81.58	62.27	50.86	35.21	25.91	18.49	7.68				
6	56	5/12/2016	R2 Road CH:3+450 to 3+500	100	82.84	69.16	56.94	45.30	34.15	21.93	10.15				
7	57	5/12/2016	R2 Road CH:3+550 to 3+600	100	79.90	65.71	52.44	41.72	31.45	21.19	9.42				
8	58	5/12/2016	R2 Road CH:3+600 to 3+650	100	88.13	68.65	51.89	39.83	28.79	18.21	7.86				
9	59	5/12/2016	R2 Road CH:3+650 to 3+700	100	84.13	69.37	53.37	40.78	28.70	18.56	8.86				
10	60	6/12/2016	R2 Road CH:3+700 to 3+750	100	83.83	69.23	54.63	41.99	29.96	18.19	7.76				
11	61	6/12/2016	R2 Road CH:3+750 to 3+800	100	81.75	67.30	54.14	43.40	29.58	18.28	7.57				
12	62	6/12/2016	R2 Road CH: 3+800 to 3+850	100	83.80	68.51	56.85	42.92	29.91	18.64	8.73				
13	63	6/12/2016	R2 Road CH: 3+850 to 3+900	100	85.62	69.92	56.78	43.46	29.36	18.18	7.62				
14	64	6/12/2016	R2 Road CH: 3+900 to 3+950	100	88.37	73.71	59.86	46.20	31.93	19.64	8.00				
15	65	7/12/2016	R2 Road CH: 3+950 to 4+000	100	89.60	75.75	60.88	47.41	34.86	21.75	9.78				
	Requ	ired Specifaca	tion	100	65-95	50-85	40-75	30-60	20-45	15-37	4 to 15		≥ 30		

SMEC-Brisbane-AQUA-CEMAT-BDA

Approved by C.S.E

Test Checked by A.C.S.E

Consultant Reps

Day.

CTCE-KALIKA J/V

Submit by Project Manage

Test Conducted by Commanager

Consultant Reps

SECONDARY TOWNS IN EGRATED URABAN ENVIRONENTAL IMPROVEMENT PROJECT

Biratnagar Sub-Metropolitant City
MONTHLY Test Result Summary Sheet For The Month of

DECEMBER 2016

STIUEIP

SUB BASE (Process Control)

According to Part 2.Section 6A-Technical Specifacations&DOR Specifacation Section 1201(3)C Physical Requirement

P9>2

CN	LAB						ling sie					Lab.	Soaked	Lab.	
SN No	Ref	Date Tested	Location/ Chainage/Station			(%	passing	by wei	ght)			OMC	CBR	MDD	Remarks
.,.	NO			63	37.5	20	10	5	2.360	1.18	0.075	(%)	(%)	(g/cc)	
16	66	8/12/2016	R2 Road CH: 4+000 to 4+050	100	92.06	77.86	61.86	47.02	33.03	19.85	8.09				
17	67	8/12/2016	R2 Road CH: 4+050 to 4+100	100	97.98	72.74	56.72	44.27	31.02	18.28	8.02				
18	68	8/12/2016	R2 Road CH: 4+050 to 4+100	100	91.44	74.74	56.96	43.46	28.30	18.28	8.06				
19	69	8/12/2016	R2 Road CH: 4+100 to 4+120	100	90.96	74.25	57.88	45.61	31.88	19.94	9.12				
20	70	8/12/2016	R2 Road CH: 4+100 to 4+120	100	88.96	73.37	56.87	44.17	31.08	19.37	7.84				
21	71	22/12/2016	R2 Road From OM SHREE C/Plant	100	81.53	61.79	45.39	34.99	29.98	23.67	5.12				
22	72	22/12/2016	0+00 to 0+120 S-13,Acess Road	100	85.34	66.55	50.27	37.54	28.96	22.41	5.73				
23	73	22/12/2016	0+00 to 0+120 S-13,Acess Road	100	83.86	64.99	49.10	36.38	28.04	22.57	5.82				
24	74	22/12/2016	0+00 to 0+120 S-13,Acess Road	100	87.00	67.48	51.03	37.94	29.18	23.33	6.11				
25	75	28/12/2016	1+00 to 1+120 R2 Puspal chowck	100	85.29	64.87	48.00	34.60	27.19	21.25	5.19				Round Abot
26	76	28/12/2016	1+00 to 1+120 R2 Puspal chowck	100	87.22	66.16	48.34	33.53	26.07	20.39	6.05				
27	77	28/12/2016	1+00 to 1+120 R2 Puspal chowck	100	86.06	66.78	50.26	35.12	26.73	20.26	7.86				
28	78	28/12/2016	R1-22 AMAR MARG	100	81.07	58.14	44.87	35.61	27.61	20.57	6.60				
29	79	28/12/2016	R1-22 AMAR MARG	100	81.87	65.22	47.29	37.09	27.55	19.39	6.10				
30	80	28/12/2016	R-19 Line	100	80.62	60.88	46.63	35.86	27.46	21.42	6.46				
	Requ	ired Specifac	ation	100	65-95	50-85	40-75	30-60	20-45	15-37	4 to 15		≥ 30		

SMEC-Brisbane-AQUA-CEMAT-BDA

Approved by C.S.E

Test Checked by A.C.S.E

Consultant Reps

Book.

CTCE-KALIKA J/V/

Submit by Project Marrager

Test Conducted by C. Manager

Consultant Reps

SECONDARY TOWNS IN . EGRATED URABAN ENVIRONENTAL IMPROVEMENT PROJECT

Biratnagar Sub-Metropolitant City
MONTHLY Test Result Summary Sheet For The Month of

DECEMBER 2016

STIUEIP

SUB BASE (Process Control)

According to Part 2.Section 6A-Technical Specifacations&DOR Specifacation Section 1201(3)C Physical Requirement

SN No	LAB Ref	Date Tested	Location/ Chainage/Station				ling sie				Lab. OMC		Soaked CBR	Lab.	1DD Remarks
NO	NO			63	37.5	20	10	5	2.360	1.18	0.075	(%)	(%)	(g/cc)	
31	81	28/12/2016	R-19 Line	100	82.84	64.66	50.57	38.31	26.80	18.47	7.54				
32	82	28/12/2016	R-14 Line	100	84.04	61.41	47.10	36.39	30.47	22.90	6.79				
33	83	28/12/2016	R-14 Line	100	84.76	60.58	45.69	34.09	27.57	20.82	6.40				
34	84	28/12/2016	CH:5+490	100	80.12	59.23	45.11	35.22	26.94	21.03	6.59				Dharamban ROAD
35	85	28/12/2016	CH:5+560	100	80.00	60.41	46.27	36.61	27.88	21.06	6.41				
36	86	28/12/2016	CH: 5+630	100	80.84	59.94	47.11	37.17	28.64	21.56	7.96				
37	87	28/12/2016	CH:5+700	100	82.29	60.86	47.32	36.86	27.08	20.70	6.49				
38	88	28/12/2016	CH:5+770	100	79.23	61.79	47.06	36.80	27.60	20.51	6.44				
39	89	28/12/2016	CH: 5+850	100	81.77	64.89	51.27	37.82	27.73	18.84	6.71				
40	90	28/12/2016	CH:5+920	100	81.13	59.86	47.76	38.06	27.76	20.39	6.98				
41	91	28/12/2016	CH: 5+990	100	78.77	58.19	49.07	37.09	27.75	21.51	6.50				
42	92	29/12/2016	CH:6+040	100	81.21	60.42	52.55	39.53	28.73	20.85	7.17				
43	93	29/12/2016	CH:6+100	100	81.68	61.63	48.79	38.05	28.83	20.64	7.57				
44	94	29/12/2016	CH: 6+150	100	82.84	64.76	49.64	36.81	27.40	19.62	6.23				
45	95	29/12/2016	CH:6+180	100	80.69	61.54	47.27	36.99	28.24	20.22	5.90				
	Requ	ired Specifacat	tion	100	65-95	50-85	40-75	30-60	20-45	15-37	4 to 15		≥ 30		

SMEC-Brisbane-AQUA-CEMAT-BDA

Approved by C.S.E

Test Checked by A.C.S.E

Consultant Reps

CTCE-KALIKA J/V

Submit by Project Manager

Test Conducted by Q. Manager

Consultant Reps

SUMMARY OF CUBE COMPRESSIVE STRENGTH TEST M30/20 MAN HOLE CASTING WORK MIX FOR THE MONTH OF DECEMBER 2016

S.N.	Lab Ref	Date of	Deatails of Mix	Location	R	atio by MA	by MASS Materials		aterials	Cube Cru	shing ,N/mm2	Remarks	
J.14.	No.	Casting		Structure	Water	Cement	Sand	Aggregate	Cement Brand	Aggregate/Sand	7 days	28-Days	
1	MR 121	18/11/2016	M30 Work mix	MANHOLE YARD	0.36	1	1.28	2.14	SHIVAM	Om shree C/plant	22.2	31.9	V.
2	MR 122	19/11/2016	M30 Work mix	MANHOLE YARD	0.36	1	1.28	2.14	SHIVAM	Om shree C/plant	22.2	32.0	
3	MR 123	20/11/2016	M30 Work mix	MANHOLE YARD	0.36	1	1.28	2.14	SHIVAM	Om shree C/plant	22.1	32.0	
4	MR 124	21/11/2016	M30 Work mix	MANHOLE YARD	0.36	1	1.28	2.14	SHIVAM	Om shree C/plant	22.3	31.9	
5	MR 125	22/11/2016	M30 Work mix	MANHOLE YARD	0.36	1	1.28	2.14	SHIVAM	Om shree C/plant	22.8	32.4	
6	MR 126	23/11/2016	M30 Work mix	MANHOLE YARD	0.36	1	1.28	2.14	SHIVAM	Om shree C/plant	22.4	31.2	
7	MR 127	24/11/2016	M30 Work mix	MANHOLE YARD	0.36	1	1.28	2.14	SHIVAM	Om shree C/plant	23.0	31.8	
8	MR 128	26/11/2016	M30 Work mix	MANHOLE YARD	0.36	1	1.28	2.14	SHIVAM	Om shree C/plant	22.2	31.1	
9	MR 129	27/12/2016	M30 Work mix	MANHOLE YARD	0.36	1	1.28	2.14	SHIVAM	Om shree C/plant	22.3	31.6	
10	MR 130	28/12/2016	M30 Work mix	MANHOLE YARD	0.36	1	1.28	2.14	SHIVAM	Om shree C/plant	22.4	31.5	
11	MR 131	29/11/2016	M30 Work mix	MANHOLE YARD	0.36	1	1.28	2.14	SHIVAM	Om shree C/plant	22.4	31.3	
12	MR 132	30/11/2016	M30 Work mix	MANHOLE YARD	0.36	1	1.28	2.14	SHIVAM	Om shree C/plant	22.0	31.4	
13	MR 133	1/12/2016	M30 Work mix	MANHOLE YARD	0.36	1	1.28	2.14	SHIVAM	Om shree C/plant	22.1	31.0	
14	MR 134	2/12/2016	M30 Work mix	MANHOLE YARD	0.36	1	1.28	2.14	SHIVAM	Om shree C/plant	22.5	31.9	
15	MR 135	2/12/2016	M30 Work mix	MANHOLE YARD	0.36	1	1.28	2.14	SHIVAM	Om shree C/plant	22.5	31.2	
16	MR 136	3/12/2016	M30 Work mix	MANHOLE YARD	0.36	1	1.28	2.14	SHIVAM	Om shree C/plant	22.4	31.3	
17	MR 137	3/12/2016	M30 Work mix	MANHOLE YARD	0.36	1	1.28	2.14	SHIVAM	Om shree C/plant	23.0	31.6	

Specifacation Limit Table For M30/20 on 7 days Age Min 67% of Total Compressive Strength

Min Required

20.1

30

SMEC-Brisbane-AQUA-BDA

Approved by Construction Supervision Engineer/CSE

Test checked by A.C.S.E.

Consultants Reps

CTCE-KALIKA J/V

Submitted by Project Manager

Test conducted by Q.C Manager

SECONDARY TOWNS INTEGRATED URABAN ENVIRONMENTAL IMPROVEMENT PROJECT

Biratnagar Sub-Metropolitant City

CEMENT TEST SUMMERY

For the Month of DECEMBER 2016

P.G-1

S.N.	Lab. Ref.	Description of cement	Testing	Consister	ncy & Setti	ng Time	Remarks
	NO.		Date	Norm. Const.	Intial(min.)	Final(min.)	
1	MR 166	KOSHI OPC	1/12/2016	38.0	210	315	All Cement
2	MR 167	KOSHI OPC	2/12/2016	38.1	205	310	Are
3	MR 168	KOSHI OPC	3/12/2016	37.7	200	320	Nepali
4	MR 169	KOSHI OPC	4/12/2016	37.3	205	320	BRAND
5	MR 170	KOSHI OPC	5/12/2016	38.4	220	325	
6	MR 171	KOSHI OPC	6/12/2016	37.7	225	310	
7	MR 172	KOSHI OPC	7/12/2016	37.7	210	340	
8	MR 173	KOSHI OPC	8/12/2016	38.0	235	350	
9	MR 174	SHIVAM OPC	9/12/2016	37.6	145	250	
10	MR 175	SHIVAM OPC	10/12/2016	36.9	160	270	OPC
11	MR 176	SHIVAM OPC	11/12/2016	36.0	155	280	
12	MR 177	SHIVAM OPC	12/12/2016	36.9	170	275	
13	MR 178	SHIVAM OPC	13/12/2016	37.4	210	275	
14	MR 179	SHIVAM OPC	14/12/2016	37.4	175	280	
15	MR 180	SHIVAM OPC	15/12/2016	37.0	215	310	
Requi	irements in ac	ccordance with BS 12/4027			> 45 Min.	10 Hrs	

SMCE-Brisbane-AQUA-BDA

Approved by C.S.E

Test Checked by A.C.S.E

Consultant Reps

CTCE-KALIKA J/V

Submitted by Project Manager

Test Conducted by Q.C Manager

SECONDARY TOWNS INTEGRATED URABAN ENVIRONMENTAL IMPROVEMENT PROJECT

Biratnagar Sub-Metropolitant City

CEMENT TEST SUMMERY

For the Month of DECEMBER 2016

P.G-2

S.N.	Lab. Ref.	Description of cement	Testing	Consiste	ncy & Setti	ng Time	Remarks
	NO.		Date	Norm. Const.	Intial(min.)	Final(min.)	
16	MR 181	SHIVAM OPC	16/12/2016	37.1	240	360	All Cement
17	MR 182	SHIVAM OPC	17/12/2016	37.0	185	290	Are
18	MR 183	SHIVAM OPC	18/12/2016	36.6	185	280	
19	MR 184	SHIVAM OPC	19/12/2016	36.6	185	280	Nepali BRAND
20	MR 185	SHIVAM OPC	20/12/2016	36.9	250	300	BRAND
21	MR 186	SHIVAM OPC	21/12/2016	36.3	185	320	
22	MR 187	SHIVAM OPC	22/12/2016	36.6	250	305	
23	MR 188	SHIVAM OPC	23/12/2016	36.4	188	310	
24	MR 189	SHIVAM OPC	24/12/2016	36.7	185	330	
25	MR 190	SHIVAM OPC	25/12/2016	36.7	180	320	OPC
26	MR 191	SHIVAM OPC	26/12/2016	37.1	175	355	OPC
27	MR 192	SHIVAM OPC	27/12/2016	37.0	195	295	
28	MR 193	SHIVAM OPC	28/12/2016	36.9	195	325	
29	MR 194	SHIVAM OPC	29/12/2016	36.7	185	300	
30	MR 195	SHIVAM OPC	30/12/2016	37.1	195	310	
					> 45 Min.	10 Hrs	

SMCE-Brisbane-AQUA-BDA

Approved by C.S.E

Test Checked by A.C.S.E

Consultant Reps

CTCE-KALIKA J/V

Submitted by Project Manager

Test Conducted by Q.C Manager

Secondary Towns Integrated Uraban Environmental Improvement Project

Biratnagar Sub-Metropolitant City

TEST RESULT SUMMA	ARY SHEET	For the Month	of DECEMBER 2016
	LALLA CAME		

N No	Ref. STIUEIP LAB/	Date of Testing	Location	Chanage	BRAND NAME 1 st class brick	Compressive Strength N/mm2	SCALE OF Sample From
1	MR 441	1/12/2016	R-21	R-21	ANAND	10.3	
2	MR 442	1/12/2016	R-21	R-21	ANAND	10.5	
3	MR 443	1/12/2016	R-21	R-21	ANAND	10.6	
4	MR 444	2/12/2016	R-3	R-3	ANAND	10.9	4
5	MR 445	2/12/2016	R-3	R-3	ANAND	11.0	
6	MR 446	2/12/2016	R-3	R-3	ANAND	10.8	
7	MR 447	3/12/2016	R-24	R-24	ANAND	10.4	
8	MR 448	3/12/2016	R-24	R-24	ANAND	10.4	
9	MR 449	3/12/2016	R-24	R-24	ANAND	10.8	
10	MR 450	4/12/2016	R-28	R-28	ANAND	11.1	
11	MR 451	4/12/2016	R-28	R-28	ANAND	11.2	
12	MR 452	4/12/2016	R-28	R-28	ANAND	10.7	
13	MR 453	10/12/2016	R-37	R-37	ANAND	/11.0	
14	MR 454	10/12/2016	R-37	R-37	ANAND	10.5	
15	MR 455	10/12/2016	R-37	R-37	ANAND	/ 10.9	
16	MR 456	10/12/2016	R-37	R-37	ANAND	/10.7	
17	MR 457	10/12/2016	R-27	R-27	ANAND	/ 11.2	
18	MR 458	12/12/2016	R-27	R-27	ANAND	10.5	
19	MR 459	12/12/2016	R-27	R-27	ANAND	10.4	
20	MR 460	13/12/2016	R-7	R-7	ANAND	10.6	O TH &

SMEC-Brisbane-AQUA-BDA-CEMAT Approved by Construction Supervision Engineer
Test Checked by A.C.S.E Consultantr Reps

CTCE-KALIKA J/V Submitted by Project Manager Test conducted by Q.C Manager Contractor Reps

Secondary Towns Integrated Uraban Environmental Improvement Project

Biratnagar Sub-Metropolitant City

TEST RESULT SUMMARY SHEET For the Month of DECEMBER 2016

SN No	Ref. STIUEIP LAB/	Date of Testing	Location	Chanage	BRAND NAME 1 st class brick	Compressive Strength N/mm2	SCALE OF Sample From
21	MR461	13/12/2016	R-7	R-7	AMBEY	10.6	
22	MR462	13/12/2016	R-7	R-7	AMBEY	10.7	
23	MR463	15/12/2016	R-14	R-14	ANAND	10.6	
24	MR 464	15/12/2016	R-14	R-14	ANAND	11.2	
25	MR 465	15/12/2016	R-14	R-14	ANAND	10.9	
26	MR 466	15/12/2016	R-22	R-22	ANAND	10.0	
27	MR 467	17/12/2016	R-22	R-22	ANAND	10.6	
28	MR 468	17/12/2016	R-22	R-22	ANAND	10.8	
29	MR 469	17/12/2016	WWTP	WALL	ANAND	10.8	
30	MR 470	17/12/2016	WWTP	WALL	ANAND	10.5	
31	MR 471	17/12/2016	WWTP	WALL	ANAND	10.4	
32	MR 472	20/12/2016	WWTP	WALL	ANAND	10.5	
33	MR 473	20/12/2016	WWTP	WALL	ANAND	A1.1	
34	MR 474	22/12/2016	R-3	R-3	ANAND	11.2	
35	MR 475	22/12/2016	R-7	R-7	ANAND	10.6	
36	MR 476	22/12/2016	R-37	R-37	ANAND	11.2	
37	MR 477	22/12/2016	R-7	R-7	ANAND	11.3	
38	MR 478	22/12/2016	R-27	R-27	ANAND	10.5	
39	MR 479	22/12/2016	R-27	R-27	ANAND	10.9	
40	MR 480	23/12/2016	R-3	R-3	ANAND	10.7	THE ST
	Speci	fication			IS1077,IS2180or NS1/2035	>-10N/MM2	CO CE KALLE OF

SMEC-Brisbane-AQUA-BDA-CEMAT Approved by Construction Supervision Engineer Test Checked by A.C.S.E Consultantr Reps

CTCE-KALIKA J/V Submitted by Project Manager Test conducted by Q.C Manager Contractor Reps

Secondary Towns Integrated Uraban Environmental Improvement Project

Biratnagar Sub-Metropolitant Cit

TEST RESULT SUMMARY	SHEET	For the Month	of DECEMBER 2016
---------------------	-------	---------------	------------------

SN No	Ref. STIUEIP LAB/	Date of Testing	Location	Chanage	BRAND NAME 1 st class brick	Compressive Strength N/mm2	SCALE OF Sample From
41	MR 481	23/12/2016	R-21	R-21	ANAND	11.0	
42	MR 482	23/12/2016	R-24	R-24	ANAND	10.7	
43	MR 483	23/12/2016	R-31	R-31	ANAND	10.9	
44	MR 484	23/12/2016	R-37	R-37	ANAND	11.7	
45	MR 485	23/12/2016	R-37	R-37	ANAND	10.7	
46	MR 486	24/12/2016	R-5	R-5	ANAND	11.6	
47	MR 487	24/12/2016	WWTP	WALL	ANAND	11.7	
48	MR 488	25/12/2016	WWTP	WALL	ANAND	10.6	
49	MR 489	25/12/2016	WWTP	WALL	ANAND	10.6	
50	MR 490	27/12/2016	WWTP	WALL	ANAND	10.4	
51	MR 491	27/12/2016	Highway	MANHOLE	ANAND	10.4	Bhrikuti chowck
52	MR 492	27/12/2016	Highway	MANHOLE	ANAND	10.8	
53	MR 493	27/12/2016	Highway	MANHOLE	ANAND	10.7	
54	MR 494	29/12/2016	R-5	R-5	ANAND	10.4	
55	MR 495	29/12/2016	R-5	R-5	ANAND	10.7	
56	MR 496	29/12/2016	R-3	R-3	ANAND	10.3	
57	MR497	29/12/2016	R-3	R-3	ANAND	-10.6	
58	MR 498	29/12/2016	WWTP	WALL	ANAND	10.4	
59	MR 499	29/12/2016	WWTP	WALL	ANAND	10.4	
60	MR 500	29/12/2016	WWTP	WALL	ANAND	10.7	
	Specific	cation			IS1077,IS2180or	>-10N/MM2	de CERA

Specification

NS1/2035

>~10N/MM2

SMEC-Brisbane-AQUA-BDA-CEMAT Approved by Construction Supervision Engineer
Test Checked by A.C.S.E Consultantr Reps

CTCE-KALIKA J/V Submitted by Project Manager Test conducted by Q.C Manager Contractor Reps

SUMMARY OF FIELD DENSITY TES (IS:2720:-PART-28) FOR THE MONTH OF DECEMBER 2016

Description: Field Density Tests on R2 Road From 3+420 To 4+140 LHS

CRUSHED STONE BASE LAYER

S.N.	L/Ref. No.	Date	Location/ Area	MDD Gm/CC	Degree	e of Compaction, %	Remarks
1			3+420 LHS	2.29	99.4	5.00	
2			3+450 RHS	2.28	99.3	4.50	
3			3+480 CL	2.27	98.70	5.00	
4			3+510 LHS	2.27	99.70	6.00	
5			3+540 RHS	2.28	99.30	6.00	
6			3+580 LHS	2.27	98.65	6.00	
7			3+600 LHS	2.28	99.03	6.00	
8			3+630 RHS	2.28	99.00	6.00	
9	FD 16	31/12/2016	3+660 CL	2.27	98.53	5.50	
10	LD 10	31/12/2016	3+690 LHS	2.26	99.70	6.00	
11			3+700 RHS	2.29	99.56	6.00	
12			3+730 CL	2.29	99.66	5.50	
13			3+750 RHS	2.27	98.54	6.00	
14			3+780 RHS	2.23	98.24	6.00	
14			3+800 CL	2.29	99.57	6.00	
16			3+830 RHS	2.28	99.30	6.00	
17			3+850 LHS	2.27	98.54	6.00	
18			3+880 CL	2.29	99.57	6.00	
				2.300	98	OMC <6.50	

SMEC-Brisbane-AQUA-CEMAT-BDA

Approved by C.S.E

Test Checked by A.C.S.E

Consultant Reps

CTCE-KALIKA J/V

Submitted by Project Manage

Test Conducted by Q.C.Marager

SUMMARY OF FIELD DENSITY TES (IS:2720:-PART-28) FOR THE MONTH OF DECEMBER 2016

Description: Field Density Tests on R2 Road From 3+420 To 4+140 LHS

CRUSHED STONE BASE LAYER

S.N.	L/Ref. No.	Date	Location/ Area	MDD Gm/CC	Degree	of Compaction, %	Remarks
19			4+00 LHS	2.28	99.1	6.00	
20			4+030 RHS	2.27	98.6	6.00	
21			4+060 CL	2.29	99.61	6.00	
22			4+090 RHS	2.29	99.61	6.00	
23			4+120 LHS	2.28	99.06	6.00	
24			4+140 RHS	2.29	99.61	6.00	
	FD 16	3112/2016					
		1					
						0110 015	
				2.300	98	OMC <6.50	

SMEC-Brisbane-AQUA-CEMAT-BDA

Approved by C.S.E

Test Checked by A.C.S.E

Consultant Reps

CTCE-KALIKA J/V

Submitted by Project Manager

Test Conducted by Q.C Manager

SUMMARY OF FIELD DENSITY TES (IS:2720:-PART-28) FOR THE MONTH OF DECEMBER 2016

Description: Field Density Tests on R2 Road From 3+420 To 4+140 LHS

CRUSHED STONE BASE LAYER

S.N.	L/Ref. No.	Date	Location/ Area	MDD Gm/CC	Degree	of Compaction, %	Remarks
19			4+00 LHS	2.28	99.1	6.00	
20			4+030 RHS	2.27	98.6	6.00	
21			4+060 CL	2.29	99.61	6.00	
22			4+090 RHS	2.29	99.61	6.00	
23			4+120 LHS	2.28	99.06	6.00	
24			4+140 RHS	2.29	99.61	6.00	
-	FD 16	3112/2016					
					/		
		-					
_							
-		-					
		-					
		-					-
		-					
				2.300	98	OMC <6.50	

SMEC-Brisbane-AQUA-CEMAT-BDA

Approved by C.S.E

Test Checked by A.C.S.E

Consultant Reps

CTCE-KALIKA J/V

Submitted by Project Manager

Test Conducted by Q.C. Manager

SUMMARY OF FIELD DENSITY TES (IS:2720:-PART-28) FOR THE MONTH OF DECEMBER 2016

Description: Field Density Tests on R2 ch:3+480 to 3+690RHS,CL,LHS

SUB BASE LAYER

S.N.	L/Ref. No.	Date	Location/ Area	MDD Gm/CC	Degree	of Compaction, %	Remarks
1			3+480 RHS	2.21	97.7	8.50	
2			3+500 LHS	2.21	97.7	9.00	
3			3+520 CL	2.23	98.7	8.00	
4			3+530 CL	2.23	98.70	7.50	
5			3+550 RHS	2.22	98.20	7.50	
6			3+560 LHS	2.22	98.20	8.00	
7			3+580 RHS	2.19	96.70	8.00	
8			3+580 CL	2.20	97.60	8.50	
9	ED 47	2/42/2046	3+600 RHS	2.22	98.10	7.50	
10	FD 17	2/12/2016	3+610 LHS	2.23	98.60	7.00	
11	_		3+620 CL	2.19	96.70	7.50	
12			3+640 RHS	2.17	96.00	8.00	
13			3+650 LHS	2.23	98.60	8.50	
14			3+650 CL	2.22	98.30	7.00	
15			3+650 RHS	2.21	97.90	8.00	
16			3+670 CL	2.22	98.30	8.50	
17			3+680 RHS	2.19	69.80	8.00	
18			3+690 LHS	2.23	98.60	8.50	
	Spe	cification Re	quirement	2.260	>95	OMC <9.50	

SMEC-Brisbane-AQUA-CEMAT-BDA

Approved by C.S.E

Test Checked by A.C.S.E

Consultant Reps

CTCE-KALIKA J/V

Submitted by Project Manager

Test Conducted by Q.C Managet/

SUMMARY OF FIELD DENSITY TES (IS:2720:-PART-28) FOR THE MONTH OF DECEMBER 2016

Description: Field Density Tests on R2 ch:3+690 to 3+770 RHS,CL,LHS

SUB BASE LAYER

S.N.	L/Ref. No.	Date	Location/ Area	MDD Gm/CC	Degree	of Compaction, %	Remarks
1			3+700 LHS	2.23	98.5	8.50	
2			3+710 RHS	2.23	98.5	8.00	
3			3+720 CL	2.21	97.7	8.00	
4			3+730 LHS	2.23	98.50	8.50	
5			3+740 RHS	2.22	98.10	9.00	
6			3+750 CL	2.21	97.60	8.50	
7			3+750RHS	2.21	97.60	8.00	
8			3+750 LHS	2.20	97.20	8.50	
9	FD 18	4/12/2016	3+760 LHS	2.19	96.70	7.50	
10	LD 10	4/12/2016	3+760 RHS	2.18	96.60	8.00	
11	-		3+760 CL	2.19	96.70	8.50	
12			3+770 LHS	2.20	97.50	8.00	
		-					
_							
	Spec	cification Re	quirement	2.260	>95	OMC <9.50	

SMEC-Brisbane-AQUA-CEMAT-BDA

Approved by C.S.E

Test Checked by A.C.S.E

Consultant Reps

CTCE-KALIKA J/V

Submitted by Project Manager

Test Conducted by Q.C Manager

SUMMARY OF FIELD DENSITY TES (IS:2720:-PART-28) FOR THE MONTH OF DECEMBER 2016

Description: Field Density Tests on R2 ch:3+770 to 3+910 RHS,CL,LHS

SUB BASE LAYER

S.N.	L/Ref. No.	Date	Location/ Area	MDD Gm/CC	Degree	e of Compaction, %	Remarks
1			3+770 LHS	2.18	96.5	8.00	
2			3+800 RHS	2.20	97.2	8.50	
3			3+790 CL	2.23	98.7	8.00	
4			3+800 LHS	2.18	96.50	8.00	
5			3+810 RHS	2.18	96.50	8.50	
6			3+820 CL	2.19	97.10	8.00	
7			3+830 RHS	2.19	97.10	97.10	
8			3+840 LHS	2.21	97.80	97.80	
9	FD 19	4/12/2016	3+860 CL	2.21	97.80	97.80	
10	10 13	4/12/2010	3+875 RHS	2.20	97.20	97.20	
11	-		3+890 LHS	2.18	96.30	96.30	
12			3+910 CL	2.19	96.80	96.80	
				10.			
	Spe	cification Re	quirement	2.260	>95	OMC <9.50	

SMEC-Brisbane-AQUA-CEMAT-BDA

Approved by C.S.E

Test Checked by A.C.S.E

Consultant Reps

CTCE-KALIKA J/V

Submitted by Project Manager

Test Conducted by Q.C Manager

SUMMARY OF FIELD DENSITY TES (IS:2720:-PART-28) FOR THE MONTH OF DECEMBER 2016

Description: Field Density Tests on R2 ch:3+910 to 4+140 RHS,CL,LHS

SUB BASE LAYER

S.N.	L/Ref. No.	Date	Location/ Area	MDD Gm/CC	Degre	e of Compaction, %	Remarks	
1			3+910 LHS	2.22	98.0	8.50		
2			3+930 RHS	2.15	95.0	8.50		
3			3+950 CL	2.20	97.0	8.00		
4			3+970 LHS	2.22	98.00	8.00		
5			3+990 RHS	2.20	97.00	8.00		
6			4+000 RHS	2.18	97.00	8.50		
7			4+010 LHS	2.21	98.00	8.50		
8			4+030 RHS	2.21	98.00	9.00		
9	FD 20	5/12/2016	5/12/2016	4+050 CL	2.21	98.00	8.00	
10	1 0 20			4+070 LHS	2.18	97.00	8.50	
11	_			4+080 CL	2.20	97.00	8.50	
12			4+090 RHS	2.18	97.00	8.00		
			4+100 CL	2.20	97.00	8.00		
			4+110 LHS	2.19	97.00	8.00		
			4+120 RHS	2.21	98.00	8.00		
-			4+130 CL	2.21	98.00	8.00		
			4+140 LHS	2.21	98.00	8.00		
			4+140 RHS	2.18	96.00	8.50		
	Spec	cification Re	quirement	2.260		OMC <9.50		

SMEC-Brisbane-AQUA-CEMAT-BDA

Approved by C.S.E

Test Checked by A.C.S.E

Consultant Reps

CTCE-KALIKA J/V

Submitted by Project Manager

Test Conducted by Q.C Manager

SUMMARY OF FIELD DENSITY TES (IS:2720:-PART-28) FOR THE MONTH OF DECEMBER 2016

Description: Field Density Tests on R2 ch:3+400 to 3+910 RHS,CL,LHS

SUB BASE LAYER

S.N.	L/Ref. No.	Date	Location/ Area	MDD Gm/CC	Degree	of Compaction, %	Remarks
1			3+470 CL	2.20	97.0	8.50	
2			3+415 RHS	2.20	97.0	8.00	
3			3+435 CL	2.18	96.0	8.00	
4			3+450 LHS	2.21	98.00	8.50	
5			3+460 RHS	2.22	98.00	8.50	
6			3+470 CL	2.18	97.00	8.50	
	FD 21	6/12/2016					
	-						
		_					
		1					
		_					
_		-					
		-					*
		-					-
				2.260		OMC <9.50	

SMEC-Brisbane-AQUA-CEMAT-BDA

Approved by C.S.E

Test Checked by A.C.S.E

Consultant Reps

CTCE-KALIKA J/V

Submitted by Project Manager

Test Conducted by Q.C Manager

Biratnagar-Sub-Metropolitant City

SUMMERY OF MORTAR COMPRESSIVE STRENGTH TEST WORK MIX CUBE

	-	
- 1	G	-

PC	JK IIIL		F DECEMBER 2016		Casting	Consisto	ncy & Settin	g Time	7 day's cub	e Crushing	28 day's cub	e crushing	Remark
s.N.	LAB REF	Name of	Location/Structure	Details of MIX	-	Norm. Const.	Intial(min.)	Final(min.)	Date	Str. N/mm2	Date	Str. N/mm2	
	No.	Shivam	R-3 Line work mix	1:4 by volume	7/11/2016	37.70	170	340	14/11/2016	6.40	5/12/2016	8.16	17
1	348		WWTP Boundry Wall	1:4 by volume	8/11/2016	37.70	170	340	15/11/2016	6.30	6/12/2016	7.89	
2	349	Shivam	WWTP Boundry Wall	1:4 by volume	9/11/2016	37.70	170	340	16/11/2016	6.50	7/12/2016	7.76	
3	350	Shivam		1:4 by volume	10/11/2016	38.90	170	355	17/11/2016	6.30	8/12/2016	7.76	1
4	351	Shivam	WWTP Boundry Wall			39.10	180	300	18/11/2016	6.30	9/12/2016	7.89	
5	352	Shivam	WWTP Boundry Wall	1:4 by volume			180	300	18/11/2016	6.50	9/12/2016	7,89	
6	353	Shivam	RANI Line Work mix	1:4 by volume			180	300	18/11/2016	6.30	9/12/2016	7.76	
7	354	Shivam	R-24 Line Work mix	1:4 by volume		39.10	180	300	18/11/2016	6.40	9/12/2016	7.89	
8	355	KOSHI	R-27 Line Work mix	1:4 by volume	11/11/2016	39.10	180	300	18/11/201	6 6.40	9/12/2016	8.03	
9	356	KOSHI	R-21 Line Work mix	1:4 by volume	11/11/2016	39.10	180	300	18/11/201	6 6.70	9/12/2016	7.89	
10	357	KOSHI	R3 Line Work Mix	1:4 by volume	11/11/2016	39.10	180	300	18/11/201		9/12/2016	7.89	-
12		KOSHI	R3 Line Work Mix	1:4 by volume	12/11/2010	38.90	190	310	19/11/201	-	10/12/2016		1
13		KOSHI	R3 Line Work Mix	1:4 by volume	12/11/201	6 38.90	190	310	19/11/201		10/12/2016		-
14	1	козні	R-22 Line Work mix	1:4 by volume	12/11/201	6 38.90	190	310	19/11/20		10/12/2010		
15	362	KOSHI	R-22 Line Work mix	1:4 by volume	e 12/11/201	6 38.90	190	310 m Max 600	19/11/20		th on 28 days		7.5 N/MN

SMEC-Brisbane-AQUA-BDA-CEMAT

Approved by Construction Supervision Engineer/CSE

Test Checked by A.C.S.E

Consultants Reps

CTCE-KALIKA J/V Submitted by Project Manager Test conducted by Q.C Manager Contractore Reps

Biratnagar-Sub-Metropolitant City

SUMMERY OF MORTAR COMPRESSIVE STRENGTH TEST WORK MIX CUBE

- '	11112		F DECEMBER 2016		Casting	Consiste	ency & Settin	g Time	7 day's cub	e Crushing	28 day's cub	e crushing	Remarks
s.N.	LAB REF	Name of CEMENT	Location/Structure	Details of MIX		Norm. Const.	Intial(min.)	Final(min.)	Date	Str. N/mm2	Date	Str. N/mm2	
40	No.	KOSHI	RANI Line Work mix	1:4 by volume	12/11/2016	38.90	190	310	19/11/2016	6.10	10/12/2016	7.89	
16	363		RANI Line Work mix	1:4 by volume	12/11/2016	38.90	190	310	19/11/2016	6.40	10/12/2016	8.30	
17	364	KOSHI	R-22 Line Work mix	1:4 by volume	12/11/2016	38.90	190	310	19/11/2016	6.30	10/12/2016	7.76	
18	365	KOSHI	R-7 Line Work Mix	1:4 by volume	12/11/2016	38.90	190	310	19/11/2016	6.40	10/12/2016	7.89	
19	366	KOSHI	R-21 Line Work mix	1:4 by volume	300 00000	38.90	190	310	19/11/2016	6.50	10/12/2016	8.03	
20	367	KOSHI	R3 Line Work Mix	1:4 by volume		38.90	190	310	19/11/2016	6.40	10/12/2016	8.16	
21	368	KOSHI	R3 Line Work Mix	1:4 by volume	12/11/2016	38.90	190	310	19/11/2016	6.40	10/12/2016	8.03	-
22	369	KOSHI	R-22 Line Work mix	1:4 by volume	12/11/2016	38.90	190	310	19/11/2016	6.50	10/12/2016	8.16	
23	370	KOSHI	R-22 Line Work mix	1:4 by volume	12/11/2016	38.90	190	310	19/11/2010	6 6.30	10/12/2016		
24	372	козні	R-22 Line Work mix	1:4 by volume	12/11/2016	38.90	190	310	19/11/201	6 6.10	10/12/2016		
26	372	KOSHI	R-22 Line Work mix	1:4 by volume	12/11/2016	38.90	190	310	19/11/201	6 6.40	10/12/2016		
27	374	козні	R-22 Line Work mix	1:4 by volume	12/11/2016	6 38.90	190	310	19/11/201	6 6.70	10/12/2016	-	
28	375	козні	R-21 Line Work mix	1:4 by volume	e 12/11/201	6 38.90	190	310	19/11/201		10/12/2016	-	
29		козні	R-21 Line Work mix	1:4 by volum	e 12/11/201	6 38.90	190	310	19/11/20		10/12/2010	-	
30	-	KOSHI	R-21 Line Work mix	1:4 by volum	e 12/11/201	6 38.90	190	310	19/11/20	/	10/12/201 h on 28 days		

SMEC-Brisbane-AQUA-BDA-CEMAT

Approved by Construction Supervision Engineer/CSE

Test Checked by A.C.S.E

Consultants Reps

CTCE-KALIKA J/V
Submitted by Project Manager
Test conducted by Q.C Manager
Contractore Reps

Biratnagar-Sub-Metropolitant City

SUMMERY OF MORTAR COMPRESSIVE STRENGTH TEST WORK MIX CUBE

C N	LAB REF	Name of	Location/Structure	Details of MIX	Casting	Consiste	ency & Settin	g Time	7 day's cut	e Crushing	28 day's cul	be crushing	Remark
S.N.	No.	CEMENT	Location/Structure			Norm. Const.	Intial(min.)	Final(min.)	Date	Str. N/mm2	Date	Str. N/mm2	
31	378	козні	R-21 Line Work mix	1:4 by volume	12/11/2016	38.90	190	310	19/12/2016	6.40	10/12/2016	7.89	
32	379	козні	R-21 Line Work mix	1:4 by volume	12/11/2016	38.90	190	310	19/12/2016	6.40	10/12/2016	7.89	
33	380	козні	RANI Line Work mix	1:4 by volume	12/11/2016	38.90	190	310	19/12/2016	6.50	10/12/2016	7.76	
34	381	козні	RANI Line Work mix	1:4 by volume	12/11/2016	38.90	190	310	19/12/2016	6.50	10/12/2016	7.89	
35	382	козні	RANI Line Work mix	1:4 by volume	12/11/2016	38.90	190	310	19/12/2016	6.40	10/12/2016	7.76	
36	383	козні	RANI Line Work mix	1:4 by volume	12/11/2016	38.90	190	310	19/12/2016	6.40	10/12/2016	7.89	
37	· 384	козні	RANI Line Work mix	1:4 by volume	12/11/2016	38.90	190	310	19/12/2016	6.50	10/12/2016	8.30	
38	385	козні	RANI Line Work mix	1:4 by volume	12/11/2016	38.90	190	310	19/12/2016	6.30	10/12/2016	8.16	
39	386	коѕні	RANI Line Work mix	1:4 by volume	12/11/2016	38.90	190	310	19/12/2016	6.30	10/12/2016	7.89	
40	387	KOSHI	R3 Line Work Mix	1:4 by volume	13/11/2016	39.10	180	320	20/11/2016	6.30	11/12/2016	8.16	
41	388	козні	R3 Line Work Mix	1:4 by volume	13/11/2016	39.10	180	320	20/11/2016	6.50	11/12/2016	8.16	
42	389	козні	R3 Line Work Mix	1:4 by volume	13/11/2016	39.10	180	320	20/11/2016	6.40	11/12/2016	-8.16	
43	390	козні	R3 Line Work Mix	1:4 by volume	13/11/2016	39.10	180	320	20/11/2016	6.40	11/12/2016	8.03	
44	391	козні	R3 Line Work Mix	1:4 by volume	13/11/2016	39.10	180	320	20/11/2016	6.10	11/12/2016	8.03	
45	392	козні	R3 Line Work Mix	1:4 by volume	13/11/2016	39.10	180	320	20/11/2016	6.10	11/12/2016	8.16	
							MIN 45m	Max 600m	Requir	red strength	on 28 days no	t less than 7.5	N/MM2

SMEC-Brisbane-AQUA-BDA-CEMAT

Approved by Construction Supervision Engineer/CSE

Test Checked by A.C.S.E

Consultants Reps

CTCE-KALIKA J/V
Submitted by Project Manager
Test conducted by Q.C Manager
Contractore Reps

STELLE.

Biratnagar-Sub-Metropolitant City

SUMMERY OF MORTAR COMPRESSIVE STRENGTH TEST WORK MIX CUBE

		Name of		Details of MIX	Casting	Consiste	ency & Settin	g Time	7 day's cub	e Crushing	28 day's cub	e crushing	Remarks
s.N.	LAB REF	CEMENT	Location/Structure	Details of MIX	ououng	Norm. Const.	Intial(min.)	Final(min.)	Date	Str. N/mm2	Date	Str. N/mm2	
46	No.	козні	R-21 Line Work mix	1:4 by volume	13/11/2016	39.10	180	320	20/11/2016	6.80	11/12/2016	7.89	
47	394	козні	R-21 Line Work mix	1:4 by volume	13/11/2016	39.10	180	320	20/11/2016	6.30	11/12/2016	8.03	
48	395	KOSHI	R-21 Line Work mix	1:4 by volume	13/11/2016	39.10	180	320	20/11/2016	6.50	11/12/2016	8.03	
49	396	козні	R-21 Line Work mix	1:4 by volume	13/11/2016	39.10	180	320	20/11/2016	6.30	11/12/2016	8.16	
50	397	козні	R-21 Line Work mix	1:4 by volume	13/11/2016	39.10	180	320	20/11/2016	6.30	11/12/2016	8.44	
	398	козні	R-21 Line Work mix	1:4 by volume	13/11/2016	39.10	180	320	20/11/2016	6.70	11/12/2016	8.16	
51	399	козні	R-24 Line Work Mix	1:4 by volume	13/11/2016	39.10	180	320	20/11/2016	6.70	11/12/2016	8.16	-
53	400	козні	R-24 Line Work Mix	1:4 by volume	13/11/2016	39.10	180	320	20/11/2016	6.50	11/12/2016	8.16	
54	401	козні	R-24 Line Work Mix	1:4 by volume	13/11/2016	39.10	180	320	20/11/2016	6.50	11/12/2016	8.30	
55	402	козні	R-24 Line Work Mix	1:4 by volume	13/11/2016	39.10	180	320	20/11/2016		11/12/2016	8.03	
56	. 403	козні	R-24 Line Work Mix	1:4 by volume	13/11/2016	39.10	180	320	20/11/2016	6.40	11/12/2016	7.89	
57	404	козні	R-24 Line Work Mix	1:4 by volume	13/11/2016	39.10	180	320	20/11/2010	1	11/12/2016	-	
58	405	козні	R-21 Line Work Mix	1:4 by volume	13/11/2016	39.10	180	320	20/11/201		11/12/2016		
59	406	козні	R-21 Line Work Mix	1:4 by volume	e 13/11/201	6 39.10	180	320	20/11/201		11/12/2016	-	-
60	407	KOSHI	R-21 Line Work Mix	1:4 by volum	e 13/11/201	6 39.10	180	320	20/11/201	-	11/12/2016 n on 28 days n	-	5 NUMBER

SMEC-Brisbane-AQUA-BDA-CEMAT
Approved by Construction Supervision Engineer/CSE
Test Checked by A.C.S.E
Consultants Reps

CTCE-KALIKA J/V
Submitted by Project Manager
Test conducted by Q.C Manager
Contractore Reps

10-1

Biratnagar-Sub-Metropolitant City

SUMMERY OF MORTAR COMPRESSIVE STRENGTH TEST WORK MIX CUBE

FOR THE MONTH OF DECEMBER 2016 P.G-5 Consistency & Setting Time Name of 7 day's cube Crushing LAB REF Details of MIX Casting 28 day's cube crushing Remarks S.N. Location/Structure CEMENT Norm. Const. Intial(min.) Final(min.) Str. N/mm2 Str. N/mm2 Date Date No. KOSHI 13/11/2016 39.10 180 320 20/11/2016 11/12/2016 408 R-21 Line Work Mix 1:4 by volume 6.40 7.76 61 62 409 KOSHI R-21 Line Work Mix 1:4 by volume 13/11/2016 39.10 180 320 20/11/2016 6.50 11/12/2016 8.03 1:4 by volume | 13/11/2016 63 410 KOSHI R-21 Line Work Mix 39.10 180 320 20/11/2016 6.50 11/12/2016 8.16 KOSHI 13/11/2016 39.10 180 320 20/11/2016 64 411 RANI Line Work mix 1:4 by volume 6.90 11/12/2016 8.16 412 KOSHI RANI Line Work mix 13/11/2016 39.10 180 320 20/11/2016 6.70 11/12/2016 8.30 65 1:4 by volume 66 413 KOSHI RANI Line Work mix 1:4 by volume 13/11/2016 39.10 180 320 20/11/2016 6.10 11/12/2016 7.76 39.10 67 414 KOSHI 1:4 by volume 13/11/2016 180 320 20/11/2016 6.50 11/12/2016 7.89 RANI Line Work mix 68 415 KOSHI RANI Line Work mix 1:4 by volume 13/11/2016 39.10 180 320 20/11/2016 6.80 11/12/2016 7.89 13/11/2016 6.50 416 KOSHI RANI Line Work mix 1:4 by volume 39.10 180 320 20/11/2016 11/12/2016 7.89 69 70 417 KOSHI R-27 Line Work Mix 1:4 by volume 13/11/2016 39.10 180 320 20/11/2016 6.80 11/12/2016 8.30 320 71 418 KOSHI 1:4 by volume 13/11/2016 39.10 180 20/11/2016 6.70 11/12/2016 8.44 R-27 Line Work Mix 72 419 KOSHI R-27 Line Work Mix 1:4 by volume 13/11/2016 39.10 180 320 20/11/2016 6.70 11/12/2016 8.20 73 420 KOSHI R-27 Line Work Mix 1:4 by volume 13/11/2016 39.10 180 320 20/11/2016 6.10 11/12/2016 7.80 KOSHI 1:4 by volume 13/11/2016 39.10 180 320 20/11/2016 6.90 11/12/2016 8.00 74 421 R-27 Line Work Mix 75 422 KOSHI R-27 Line Work Mix 1:4 by volume | 13/11/2016 39.10 180 320 20/11/2016 6.90 11/12/2016 8.20

SMEC-Brisbane-AQUA-BDA-CEMAT

Approved by Construction Supervision Engineer/CSE

Test Checked by A.C.S.E Consultants Reps

CTCE-KALIKA J/V
Submitted by Project Manager
Test conducted by Q.C Manager
Contractore Reps

MIN 45m

Max 600m

Biratnagar-Sub-Metropolitant City

SUMMERY OF MORTAR COMPRESSIVE STRENGTH TEST WORK MIX CUBE

		Name of	F DECEMBER 2016	D. J. II CANY	Casting	Consiste	ncy & Settin	g Time	7 day's cub	e Crushing	28 day's cub	e crushing	Remarks
S.N.	LAB REF	CEMENT	Location/Structure	Details of MIX		Norm. Const.	Intial(min.)	Final(min.)	Date	Str. N/mm2	Date	Str. N/mm2	
76	423	козні	R-3 Line Work Mix	1:4 by volume	14/11/2016	38.60	190	325	21/11/2016	6.70	12/12/2016	8.60	
77	424	козні	R-3 Line Work Mix	1:4 by volume	14/11/2016	38.60	190	325	21/11/2016	6.90	12/12/2016	8.20	
78	425	козні	R-3 Line Work Mix	1:4 by volume	14/11/2016	38.60	190	325	21/11/2016	6.30	12/12/2016	7.90	
79	426	козні	R-3 Line Work Mix	1:4 by volume	14/11/2016	38.60	190	325	21/11/2016	6.30	12/12/2016	8.00	
80	427	козні	R-3 Line Work Mix	1:4 by volume	14/11/2016	38.60	190	325	21/11/2016	6.70	12/12/2016	8.00	
81	428	козні	R-3 Line Work Mix	1:4 by volume	14/11/2016	38.60	190	325	21/11/2016	6.80	12/12/2016	8.20	
82	429	козні	R-3 Line Work Mix	1:4 by volume	14/11/2016	38.60	190	325	21/11/2016	6.30	12/12/2016	8.30	
83	430	козні	R-22 Line Work Mix	1:4 by volume	14/11/2016	38.60	190	325	21/11/2016	6.50	12/12/2016	8.30	
84	431	KOSHI	R-22 Line Work Mix	1:4 by volume	14/11/2016	38.60	190	325	21/11/2016	6.70	12/12/2016	8.20	
85	432	козні	R-22 Line Work Mix	1:4 by volume	14/11/2016	38.60	190	325	21/11/2016	6.40	12/12/2016	8.00	
86	, 433	козні	R-22 Line Work Mix	1:4 by volume	14/11/2016	38.60	190	325	21/11/2016	6.90	12/12/2016	7.80	
87	434	козні	R-22 Line Work Mix	1:4 by volume	14/11/2016	38.60	190	325	21/11/2016	6.90	12/12/2016	8.60	
88	435	козні	R-24 Line Work Mix	1:4 by volume	14/11/2016	38.60	190	325	21/11/201	6 6.30	12/12/2016	7.90	
89	436	козні	R-24 Line Work Mix	1:4 by volume	14/11/2016	38.60	190	325	21/11/201	6 6.30	12/12/2016	8.30	
90	437	козні	R-24 Line Work Mix	1:4 by volume	14/11/2016	38.60	190	325	21/11/201		12/12/2016 n on 28 days n	-	

Approved by Construction Supervision Engineer/CSE
Test Checked by A.C.S.E

Consultants Reps

CTCE-KALIKA J/V
Submitted by Project Manager
Test conducted by Q.C Manager
Contractore Reps

Biratnagar-Sub-Metropolitant City

SUMMERY OF MORTAR COMPRESSIVE STRENGTH TEST WORK MIX CUBE

	LAB REF	Name of	1	Details of MIX	Casting	Consiste	ency & Settin	g Time	7 day's cub	e Crushing	28 day's cu	be crushing	Remarks
S.N.	No.	CEMENT	Location/Structure			Norm. Const.	Intial(min.)	Final(min.)	Date	Str. N/mm2	Date	Str. N/mm2	
91	438	козні	R-24 Line Work Mix	1:4 by volume	14/11/2016	38.60	190	325	21/11/2016	6.70	12/12/2016	7.80	
92	439	коѕні	R-24 Line Work Mix	1:4 by volume	14/11/2016	38.60	190	325	21/11/2016	6.80	-12/12/2016	8.20	
93	440	коѕні	R-24 Line Work Mix	1:4 by volume	14/11/2016	38.60	190	325	21/11/2016	6.30	_12/12/2016	8.00	
94	441	козні	RANI Line Work mix	1:4 by volume	14/11/2016	38.60	190	325	21/11/2016	6.70	12/12/2016	8.30	
95	442	козні	RANI Line Work mix	1:4 by volume	14/11/2016	38.60	190	325	21/11/2016	6.70	12/12/2016	8.30	
96	443	козні	RANI Line Work mix	1:4 by volume	14/11/2016	38.60	190	325	21/11/2016	6.40	12/12/2016	8.30	
97	444	козні	RANI Line Work mix	1:4 by volume	14/11/2016	38.60	190	325	21/11/2016	6.40	12/12/2016	8.40	
98	445	козні	RANI Line Work mix	1:4 by volume	14/11/2016	38.60	190	325	21/11/2016	6.10	12/12/2016	7.90	
99	446	козні	RANI Line Work mix	1:4 by volume	14/11/2016	38.60	190	325	21/11/2016	6.50	12/12/2016	8.40	
100	447	козні	R-3 Line Work Mix	1:4 by volume	15/11/2016	38.90	195	320	22/11/2016	6.80	13/12/2016	8.20	
101	448	козні	R-3 Line Work Mix	1:4 by volume	15/11/2016	38.90	195	320	22/11/2016	6.70	13/12/2016	8.30	
102	449	козні	R-3 Line Work Mix	1:4 by volume	15/11/2016	38.90	195	320	22/11/2016	6.80	13/12/2016	8.30	
103	450	козні	R-3 Line Work Mix	1:4 by volume	15/11/2016	38.90	195	320	22/11/2016	6.30	13/12/2016	8.40	
104	451	козні	R-3 Line Work Mix	1:4 by volume	15/11/2016	38.90	195	320	22/11/2016	6.50	13/12/2016	8.20	
105	452	KOSHI	R-3 Line Work Mix	1:4 by volume	15/11/2016	38.90	195	320	22/11/2016	6.10	13/12/2016	8.20	

Approved by Construction Supervision Engineer/CSE
Test Checked by A.C.S.E

Consultants Reps

CTCE-KALIKA J/V
Submitted by Project Manager
Test conducted by Q.C Manager
Contractore Reps

46 20 SIE

Biratnagar-Sub-Metropolitant City

SUMMERY OF MORTAR COMPRESSIVE STRENGTH TEST WORK MIX CUBE

		Name of		Details of MIX	Casting	Consiste	ency & Settin	g Time	7 day's cub	e Crushing	28 day's cul	be crushing	Remarks
S.N.	No.	CEMENT	Location/Structure	Details of MIX	Casting	Norm. Const.	Intial(min.)	Final(min.)	Date	Str. N/mm2	Date	Str. N/mm2	
106	453	козні	R-22 Line Work Mix	1:4 by volume	15/11/2016	38.90	195	320	22/11/2016	6.50	13/12/2016	8.20	
107	454	козні	R-22 Line Work Mix	1:4 by volume	15/11/2016	38.90	195	320	22/11/2016	6.30	13/12/2016	8.30	
108	455	козні	R-22 Line Work Mix	1:4 by volume	15/11/2016	38.90	195	320	22/11/2016	6.30	13/12/2016	8.20	
109	456	козні	R-22 Line Work Mix	1:4 by volume	15/11/2016	38.90	195	320	22/11/2016	6.40	13/12/2016	8.20	
110	457	коѕні	R-22 Line Work Mix	1:4 by volume	15/11/2016	38.90	195	320	22/11/2016	6.40	13/12/2016	8.60	
111	458	KOSHI	R-22 Line Work Mix	1:4 by volume	15/11/2016	38.90	195	320	22/11/2016	6.50	13/12/2016	8.20	
112	459	козні	R-21 Line Work Mix	1:4 by volume	15/11/2016	38.90	195	320	22/11/2016	6.50	13/12/2016	7.90	
113	460	козні	R-21 Line Work Mix	1:4 by volume	15/11/2016	38.90	195	320	22/11/2016	6.40	13/12/2016	8.40	
114	461	козні	R-21 Line Work Mix	1:4 by volume	15/11/2016	38.90	195	320	22/11/2016	6.10	13/12/2016	8.60	
115	462	козні	R-21 Line Work Mix	1:4 by volume	15/11/2016	38.90	195	320	22/11/2016	6.30	13/12/2016	8.20	
116	463	козні	R-21 Line Work Mix	1:4 by volume	15/11/2016	38.90	195	320	22/11/2016	6.50	13/12/2016	7.80	
117	464	козні	R-21 Line Work Mix	1:4 by volume	15/11/2016	38.90	195	320	22/11/2016	6.30	13/12/2016	8.30	
118	465	козні	RANI Line Work Mix	1:4 by volume	15/11/2016	38.90	195	320	22/11/2010	6.70	13/12/2016	7.90	
119	466	козні	RANI Line Work Mix	1:4 by volume	15/11/2016	38.90	195	320	22/11/201	6 6.40	13/12/2016	8.30	
120	467	козні	RANI Line Work Mix	1:4 by volume	15/11/2016	38.90	195	320	22/11/201	6 6.50	13/12/2016	8.60	-

Approved by Construction Supervision Engineer/CSE

Test Checked by A.C.S.E Consultants Reps CTCE-KALIKA J/V
Submitted by Project Manager
Test conducted by Q.C Manager
Contractore Reps

Biratnagar-Sub-Metropolitant City

SUMMERY OF MORTAR COMPRESSIVE STRENGTH TEST WORK MIX CUBE

FOR THE MONTH OF DECEMBER 2016

	LAB REF	Name of		Details of MIX	Casting	Consiste	ncy & Settin	g Time	7 day's cub	e Crushing	28 day's cul	be crushing	Remarks
S.N.	No.	CEMENT	Location/Structure			Norm. Const.	Intial(min.)	Final(min.)	Date	Str. N/mm2	Date	Str. N/mm2	
121	468	козні	RANI Line Work Mix	1:4 by volume	15/11/2016	38.90	195	320	22/11/2016	6.70	13/12/2016	8.40	
122	469	козні	RANI Line Work Mix	1:4 by volume	15/11/2016	38.90	195	320	22/11/2016	6.10	13/12/2016	8.20	
123	470	козні	RANI Line Work Mix	1:4 by volume	15/11/2016	38.90	195	320	22/11/2016	6.50	13/12/2016	_8.20	
124	471	козні	R-3 Line Work Mix	1:4 by volume	16/11/2016	38.90	200	325	23/11/2016	6.90	14/12/2016	8.30	, i
125	472	козні	R-3 Line Work Mix	1;4 by volume	16/11/2016	38.90	200	325	23/11/2016	6.90	14/12/2016	8.20	
126	473	KOSHI	R-3 Line Work Mix	1:4 by volume	16/11/2016	38.90	200	325	23/11/2016	6.50	14/12/2016	8.30	
127	474	KOSHI	R-3 Line Work Mix	1:4 by volume	16/11/2016	38.90	200	325	23/11/2016	6.10	14/12/2016	8.60	
128	475	козні	R-3 Line Work Mix	1:4 by volume	16/11/2016	38.90	200	325	23/11/2016	6.50	14/12/2016	7.90	
129	476	козні	R-3 Line Work Mix	1:4 by volume	16/11/2016	38.90	200	325	23/11/2016	6.70	14/12/2016	8.30	
130	477	козні	R-21 Line Work Mix	1:4 by volume	16/11/2016	38.90	200	325	23/11/2016	6.70	14/12/2016	8.20	
131	478	козні	R-21 Line Work Mix	1:4 by volume	16/11/2016	38.90	200	325	23/11/2016	6.90	14/12/2016	8.20	
132	479	козні	R-21 Line Work Mix	1:4 by volume	16/11/2016	38.90	200	325	23/11/2016	6.10	14/12/2016	7.90	
133	480	козні	R-21 Line Work Mix	1:4 by volume	16/11/2016	38.90	200	325	23/11/2016	6.80	14/12/2016	8.20	
134	481	козні	R-21 Line Work Mix	1:4 by volume	16/11/2016	38.90	200	325	23/11/2016	6.90	14/12/2016	8.30	
135	482	козні	R-21 Line Work Mix	1:4 by volume	16/11/2016	38.90	200	325	23/11/2016	6.40	14/12/2016	8.20	
_							MIN 45m	Max 600m	Requi	ired strength	on 28 days m	tess than 7.	5 N/MM2

Approved by Construction Supervision Engineer/CSE

Test Checked by A.C.S.E Consultants Reps

CTCE-KALIKA J/V
Submitted by Project Manager
Test conducted by Q.C Manager
Contractore Reps

600

P.G-9

Biratnagar-Sub-Metropolitant City

SUMMERY OF MORTAR COMPRESSIVE STRENGTH TEST WORK MIX CUBE

	LAB REF	Name of		Details of MIX	0-11-	Consiste	ency & Settir	ng Time	-		34.4		G-10
S.N.	No.	CEMENT	Location/Structure	Details of MIX	Casting	Norm. Const.			7 day's cul	Str. N/mm2	28 day's cu Date	Str. N/mm2	Remarks
136	483	коѕні	RANI Line Work Mix	1:4 by volume	16/11/2016	38.90	200	325	23/11/2016	6.70	14/12/2016	8.30	
137	484	козні	RANI Line Work Mix	1:4 by volume	16/11/2016	38.90	200	325	23/11/2016	6.30	14/12/2016	7.80	
138	485	козні	RANI Line Work Mix	1:4 by volume	16/11/2016	38.90	200	325	23/11/2016	6.70	14/12/2016	8.60	
139	486	козні	RANI Line Work Mix	1:4 by volume	16/11/2016	38.90	200	325	23/11/2016	6.80	14/12/2016	8.30	
140	487	козні	RANI Line Work Mix	1:4 by volume	16/11/2016	38.90	200	325	23/11/2016	6.50	14/12/2016	8,30	
141	488	коѕні	RANI Line Work Mix	1:4 by volume	16/11/2016	38.90	200	325	23/11/2016	6.90	14/12/2016	8,40	
142	489	козні	R-22 Line Work Mix	1:4 by volume	16/11/2016	38.90	200	325	23/11/2016	6.10	14/12/2016	8.60	
143	490	козні	R-22 Line Work Mix	1:4 by volume	16/11/2016	38.90	200	325	23/11/2016	6.80	14/12/2016	8.00	
144	491	козні	R-22 Line Work Mix	1:4 by volume	16/11/2016	38.90	200	325	23/11/2016	6.80	14/12/2016	8.60	
145	492	козні	R-22 Line Work Mix	1:4 by volume	16/11/2016	38.90	200	325	23/11/2016	6.40	14/12/2016	8.60	
146	493	козні	R-22 Line Work Mix	1:4 by volume	16/11/2016	38.90	200	325	23/11/2016	6.40	14/12/2016	8.40	
147	494	коѕні	R-22 Line Work Mix	1:4 by volume	16/11/2016	38.90	200	325	23/11/2016	6.80	14/12/2016	7.90	
148	495	козні	R-28 Line Work Mix	1:4 by volume	21/11/2016	36.60	245	360	28/11/2016	6.70	19/12/2016	8.30	
149	496	козні	R-27 Line Work Mix	1:4 by volume	22/11/2016	37.10	255	370	29/11/2016	6.40	20/12/2016	8.00	
150	497	коѕні	R-22 Line Work Mix	1:4 by volume	23/11/2016	37.70	250	380	30/11/2016	6.50	21/12/2016	7.90	
							MIN 45m	Max 600m	Require	ed strength o	28rdays not	less than 7.5	N/MM2

Approved by Construction Supervision Engineer/CSE
Test Checked by A.C.S.E
Consultants Reps

CTCE-KALIKA J/V
Submitted by Project Manager
Test conducted by Q.C Manager
Contractore Reps

E

Biratnagar-Sub-Metropolitant City

SUMMERY OF MORTAR COMPRESSIVE STRENGTH TEST WORK MIX CUBE

	LAB REF	Name of		Details of MIX	Casting	Consiste	ency & Settir	ng Time	7 day's cut	e Crushing	28 day's cu	be crushing	Remarks
S.N.	No.	CEMENT	Location/Structure			Norm. Const.	Intial(min.)	Final(min.)	Date	Str. N/mm2	Date	Str. N/mm2	
151	498	козні	R-28 Line Work Mix	1:4 by volume	24/11/2016	38.30	240	360	31/11/2016	6.80	21/12/2016	8.60	
152	499	козні	R-28 Line Work Mix	1:4 by volume	25/11/2016	37.10	245	370	1/12/2016	6.40	22/12/2016	_8:30	
153	500	козні	R-3 Line Work Mix	1:4 by volume	25/11/2016	37.10	245	370	1/12/2016	6.00	22/12/2016	7.90	
154	501	козні	R-3 Line Work Mix	1:4 by volume	26/11/2016	36.90	240	380	2/12/2016	5.60	23/12/2016	8.00	
155	502	козні	R-5 Line Work Mix	1:4 by volume	26/11/2016	36.90	240	380	2/12/2016	5.70	23/12/2016	7.90	
156	503	козні	R-3 Line Work Mix	1:4 by volume	27/11/2016	37.30	260	370	3/12/2016	6.10	24/12/2016	8.00	
157	504	козні	R-37 Line Work Mix	1:4 by volume	27/11/2016	37.30	260	370	3/12/2016	6.10	24/12/2016	7.80	
158	505	козні	R-24 Line Work Mix	1:4 by volume	28/11/2016	38.00	250	390	5/12/2016	6.70	26/12/2016	7.90	
159	506	козні	R-28 Line Work Mix	1:4 by volume	28/11/2016	38.00	250	390	5/12/2016	5.90	26/12/2016	7.80	
160	507	козні	R-5 Line Work Mix	1:4 by volume	28/11/2016	38.00	250	390	5/12/2016	5.90	26/12/2016	7.80	
161	508	козні	R-3 Line Work Mix	1:4 by volume	29/11/2016	38.40	270	360	6/12/2016	6.80	27/12/2016	8,40	
162	509	козні	R-5 Line Work Mix	1:4 by volume	29/11/2016	38.40	270	360	6/12/2016	6.80	27/12/2016	8.80	
163	510	козні	R-28 Line Work Mix	1:4 by volume	29/11/2016	38.40	270	360	6/12/2016	6.70	27/12/2016	8.40	
164	511	козні	R-28 Line Work Mix	1:4 by volume	30/11/2016	38.60	270	360	7/12/2016	6.40	28/12/2016	8.70	
165	512	козні	R-37 Line Work Mix	1:4 by volume	30/11/2016	38.60	270	360	7/12/2016	7.20	28/12/2016	_8.40	
					MIN 45m Max 600m Required strength on 28 days not I			ot less than 7.	5 N/MM2				

Approved by Construction Supervision Engineer/CSE

Test Checked by A.C.S.E Consultants Reps CTCE-KALIKA J/V Submitted by Project Manager Test conducted by Q.C Manager Contractore Reps

Biratnagar-Sub-Metropolitant City

SUMMERY OF MORTAR COMPRESSIVE STRENGTH TEST WORK MIX CUBE

P.G-12 FOR THE MONTH OF DECEMBER 2016 Consistency & Setting Time Name of LAB REF Details of MIX Casting 7 day's cube Crushing 28 day's cube crushing Remarks S.N. Location/Structure Str. N/mm2 Str. N/mm2 Norm. Const. Intial(min.) Final(min.) Date CEMENT Date No. 7/12/2016 6.80 28/12/2016 166 513 KOSHI R-3 Line Work Mix 1:4 by volume 30/11/2016 38.60 250 365 8.60 1:4 by volume | 30/11/2016 167 514 KOSHI WWTP WALL 38.60 250 365 7/12/2016 5.90 28/12/2016 7.80 6.30 28/12/2016 7-90 515 KOSHI R-37 Line Work Mix 1:4 by volume | 30/11/2016 38.60 250 365 7/12/2016 168 365 7/12/2016 6.40 28/12/2016 8.40 169 516 KOSHI R-28 Line Work Mix 1:4 by volume 30/11/2016 38.60 250 365 7/12/2016 6.50 28/12/2016 8.30 170 517 KOSHI R-7 Line Work Mix 1:4 by volume 30/11/2016 38.60 250 518 KOSHI 1:4 by volume 30/11/2016 38.60 250 365 7/12/2016 6.30 28/12/2016 7.90 171 R-3 Line Work Mix 37.50 210 315 8/12/2016 6.70 29/12/2016 8.20 WWTP WALL 1:4 by volume 1/12/2016 172 519 KOSHI 1/12/2016 37.50 210 315 8/12/2016 6.50 29/12/2016 8,00 520 KOSHI WWTP WALL 1:4 by volume 173 8/12/2016 6.30 29/12/2016 7.90-1/12/2016 37.50 210 315 174 521 KOSHI WWTP WALL 1:4 by volume 320 10/12/2016 5.60 30/12/2016 7.90 3/12/2016 37.00 200 175 522 KOSHI WWTP WALL 1:4 by volume 37.50 11/12/2016 6.30 31/12/2016 8.20 176 523 KOSHI R-3 Line Work Mix 1:4 by volume 4/12/2016 205 325 11/12/2016 6.00 31/12/2016 177 KOSHI WWTP WALL 1:4 by volume 4/12/2016 37.50 205 325 7.80 524 KOSHI R-3 Line Work Mix 1:4 by volume 4/12/2016 37.50 205 325 11/12/2016 5.70 31/12/2016 7.80 178 526

Approved by Construction Supervision Engineer/CSE

Test Checked by A.C.S.E.

Consultants Reps

CTCE-KALIKA J/V Submitted by Project Manager Test conducted by Q.C Manager Contractore Reps

MIN 45m

Max 600m

SUMMARY OF FIELD DENSITY TES (IS:2720:-PART-28) FOR THE MONTH OF DECEMBER 2016

Description:Field Density Tests on R2 Road From 0+00 to 0+120 S-13 Acess Road

	1.00		S	UB GRADE			
S.N.	L/Ref. No.	Date	Location/ Area	MDD Gm/CC	Degre	ee of Compaction, %	Remarks
1	-		0+010 LHS	2.08	97.0	8.50	
2			0+020 RHS	2.09	97.0	7.50	
)			0+030 CL	2.07	97.00	7.50	-
4			0+040 LHS	2.10	98.00	8.00	-
5			0+050 RHS	2.11	98.00	8.00	
6			0+060 CL	2.08	97.00	8.00	
7			0+070 LHS	2.07	97.00	8.50	
8			0+080 RHS	2.06	96.00	7.50	
9	FD 25	7/12/2016	0+090 CL	2.08	97.00	7.50	
10	-		0+100 LHS	2.06	96.00	8.00	
11			0+100 RHS	2.07	97.00	8.00	
12	2.		0+120 CL	2.09	98.00	8.00	
-		-					
7							
						,	
	*			# (F)			
	-			2.110	95	OMC <8.50	

SMEC-Brisbane-AQUA-CEMAT-BDA

Approved by C.S.E

Test Checked by A.C.S.E

Consultant Reps

CTCE-KALIKA J/V

Submitted by Project Manager

Test Conducted by Q.C Manager

SUMMARY OF FIELD DENSITY TES (IS:2720:-PART-28) FOR THE MONTH OF DECEMBER 2016

Description : Field Density Tests on R2 ch:R-122 LINE AMAR MARG (0+00 to 1+100)

SUB GRADE

S.N.	L/Ref. No.	Date	Location/ Area	MDD Gm/CC	Degree	of Compaction, %	Remarks
1			0+00 CL	2.03	96.6	5.00	
2			0+020 CL	2.01	95.7	4.00	
3			0+040 CL	2.03	96.57	4.50	
4			0+060 CL	2.02	95.73	5.00	
5			0+080 CL	2.04	96.68	4.00	
6			0+100 CL	2.03	96.57	4.00	
7			0+120 CL	2.02	95.73	4.00	
8			0+140 CL	2.04	96.68	5.00	
9	FD 00	45/40/0040	0+150 CL	2.04	96.68	4.00	
10	FD 28	15/12/2016	0+160 CL		96.68	4.00	
	-	V					
		1					
				2.100	95	OMC <8.25	

SMEC-Brisbane-AQUA-CEMAT-BDA

Approved by C.S.E

Test Checked by A.C.S.E

Consultant Reps

CTCE-KALIKA J/V

Submitted by Project Manager

Test Conducted by Q.C Manager

SUMMARY OF FIELD DENSITY TES (IS:2720:-PART-28) FOR THE MONTH OF DECEMBER 2016

Description: Field Density Tests on R2 ch:R-119LINE AMAR MARG (0+00 to 1+190)

SUB GRADE

S.N.	L/Ref. No.	Date	Location/ Area	MDD Gm/CC	Degree	e of Compaction, %	Remarks
1			0+00 CL	2.04	97.1	4.50	
2			0+020 CL	2.03	96.6	4.00	
3			0+050 CL	2.01	95.61	4.50	
4			0+070 CL	2.02	96.00	4.00	
5			0+090 CL	2.01	95.61	4.50	
6			0+100 CL	2.03	96.62	4.00	
7			0+110 CL	2.04	97.32	4.00	
8			0+120 CL	2.03	96.84	6.00	
9	FD 29	15/12/2016	0+140 CL	2.03	96.84	4.00	
10	10 20	13/12/2010	0+165 CL	2.04	94.32	4.00	
	-		0+180 CL	2.03	96.84	4.00	
			0+180 CL	2.04	97.32	5.00	
					/		
				/			
				2.100	95	OMC <8.25	

SMEC-Brisbane-AQUA-CEMAT-BDA

Approved by C.S.E

Test Checked by A.C.S.E

Consultant Reps

CTCE-KALIKA J/V/*

Submitted by Project Manager

Test Conducted by Q.C Manager

SUMMARY OF FIELD DENSITY TES (IS:2720:-PART-28) FOR THE MONTH OF DECEMBER 2016

Description : Field Density Tests on R2 ch:R-14 way to S-5 Way 0+00 to 0+120 R-4 Line 2+00 to 2+400 National Trading to Jatuwa Road

SUB GRADE

S.N.	L/Ref. No.	Date	Location/ Area	MDD Gm/CC	Degree	of Compaction, %	Remarks
1			0+010 CL	2.02	96.19		
2			0+030 CL	2.05	97.62		
3	FD 30	15/12/2016	0+050 CL	2.04	97.14		
4	LD 30	15/12/2016	0+070 CL	2.03	96.69		
5			0+090 CL	2.03	96.67		
6			0+120 CL	2.04	97.14		
		Require	ed	2.10	95.00	OMC <8.25	
1			2+00 CL	1.90	95.67		
2			2+035 CL	1.92	96.39		
3			2+070 CL	1.96	98.40		
4	-		2+110 CL	1.93	96.94		
5			2+145 CL	1.94	97.55		
6	FD 31	16/12/2016	2+180 CL	1.94	97.55		
7	1031	10/12/2016	2+215 CL	1.94	97.32		
8			2+250 CL	1.90	95.46		
9			2+285 CL	1.95	97.81		-
10			2+320 CL	1.92	96.48		
11			2+365 CL	1.95	97.78		
12			2+400 CL	1.92	96.48		
				1.990	95	OMC <10.25	

SMEC-Brisbane-AQUA-CEMAT-BDA

Approved by C.S.E

Test Checked by A.C.S.E

Consultant Reps

CTCE-KALIKA J/V

Submitted by Project Manager

Test Conducted by Q.C Manager

SUMMARY OF FIELD DENSITY TES (IS:2720:-PART-28) FOR THE MONTH OF DECEMBER 2016

Description : Field Density Tests on CH:0+00 to 1+185 R-4 Road National Trading to Jattuwa Road

	L/Ref.	UB GRADE				P	.G-1
S.N.	No.	Date	Location/ Area -CL	MDD Gm/CC	Degre	e of Compaction, %	Remarks
1			0+030	1.91	96.2	4.00	
2			0+060	1.91	96.2	5.50	
3			0+090	1.94	97.44	5.00	
4			0+120	1.94	97.44	5.00	
5			0+150	1.90	95.48	4.50	
6			0+180	1.91	96.15	5.00	
7			0+210	1.97	98.80	4.00	
8			0+240	1.91	95.77	5.00	
9			0+270	1.95	97.76	5.00	
10			0+300	1.94	97.29	5.00	
1.1	FD 34	20,21,22 December	0+330	1.92	96.36	5.00	
12		2016	0+360	1.95	97.76	5.00	
13	-		0+390	1.93	96.80	4.00	1
14			0+420	1.93	96.80	4.00	
15			0+450	1.97	98.77	5.00	
16			0+480	1.94	97.52	5.00	
17			0+510	1.93	96.80	5.00	
18			0+550	1.94	97.52	4.00	
19			0+580	1.92	96.60	4.00	
20		0+610	1.95	98.17	4.00		
21			0+640	1.92	96.80	4.00	
22			0+670	1.93	96.80	5.00	
				1.990	95	OMC <10.25	

SMEC-Brisbane-AQUA-CEMAT-BDA

Approved by C.S.E

Test Checked by A.C.S.E

Consultant Reps

CTCE-KALIKA J/V

Submitted by Project Manager

Test Conducted by Q.C Manage

SUMMARY OF FIELD DENSITY TES (IS:2720:-PART-28) FOR THE MONTH OF DECEMBER 2016

Description : Field Density Tests on CH:0+00 to 1+185 R-4 Road National Trading to Jattuwa Road

	L/Ref.	UB GRADE				P	.G-2
S.N.		Date	Location/ Area -CL	MDD Gm/CC	Degre	e of Compaction, %	Remarks
23			0+700	1.93	96.8	4.50	
24			0+730	1.95	98.2	5.00	
25			0+760	1.92	96.38	4.00	
26			0+790	1.97	98.91	4.00	
27			0+820	1.98	99.46	4.00	
28			0+850	1.93	97.05	5.00	
29			0+880	1.94	97.28	4.50	
30			0+910	1.89	95.22	5.00	
31		1	0+940	1.93	97.02	4.00	
32			0+970	1.95	98.07	4.00	
33	FD 34	20,21,22 December –	1+000	1.92	96.33	4.00	
34		2016	1+030	1.94	97.46	5.00	
35	-		1+060	1.91	95.95	4.50	
36			1+090	1.91	95.95	5.00	
37			1+110	1.95	97.79	4.50	
38			1+130	1.91	96.13	4.00	
39			1+150	1.93	96.96	4.00	
40			1+160	1.90	95.47	4.00	
11			1+170	1.94	97.36	4.50	
12			1+185	1.91	96.13	4.00	
	-			1.990	95	OMC <10.25	

SMEC-Brisbane-AQUA-CEMAT-BDA

Approved by C.S.E

Test Checked by A.C.S.E

Consultant Reps

CTCE-KALIKA J/V
Submitted by Project Manager

Test Conducted by Q.C Manage

Biratnagar Sub-Metropolitant City

SUMMERY OF LAB TEST RESULT OF SUB GRADE

(For the Month of DECEMBER 2016)

S.N.		DESCRIPTION OF MATERIAL	TYPE OF MAT.	Chanage/Location	Modified F	roctorGm/CC	CBR	REMARKS
	REF. NO.				MDD	OMC %	%	KEWAKKS
1	MR 30	SUB GRADE	SANDY & Gravel mixede	0+00 to 0+120	2.140	8.50	9.0	S-13 Acess
2	MR 31	SUB GRADE	Sandy Clay Soil	5+480 to 6+380	2.110	9.50	8.0	Dharamban Road
3	MR 32	SUB GRADE	Clay Soil	0+00 to 0+160	2.100	8.00	8.0	R-14 Line
4	MR 33	SUB GRADE	Clay Soil	R-4 line 0+00 to 1+185	1.990	10.25	6.5	R-4 Road
A.		***				,		
	y x							
A	* 1	REQUIREMENT LIMITS	ade and Bridge works Sooti		.)		Min.	

SMEC-Brisbane-AQUA-CEMAT-BDA

Approved by C.S.E

Test Checked by A.C.S.E

Consultant Reps

CTCE-KALIKA J/V

Submitted by Project Manager

Test Conducted by Q.C Manager

Contractors Reps

Biratnagar Sub-Metropolitant City

MONTHLY Test Result Summary Sheet For The Month of DECEMBER 2016

STIUEIP

Graded Crushed Stone Base Course (Process Control)

STANDARD SPECIFICATION FOR ROAD AND BRIDGE WORKS SECTION 1200 Table 12.3 Physical Requirement of Graded Crushed Stone Base

SN	LAB REF	REF Date Tested Location/ Chainage		Grading sieve size (mm) (% passing by weight)						FI	CR Ratio	LAA	AIV	SSS 5 cycle	Soaked CBR	Lab.	Lab. OMC	Remarks		
110	No			40	31.5	20	10	4.75	2.36	0.60	0.075	%	(%)	(%)	(%)	(%)	(%)	(g/cc)	(%)	
1	80	20/12/2016	CH:3+520 LHS	100	97.8	74.9	51.1	39.2	32.3	21.2	6.9	17.38	89.2	32.52	18.57	2.23	96	2.3	6.50	
2	81	20/12/2016	CH:3+770 LHS	100	96.4	69.0	58.1	39.6	34.1	20.5	6.7	18.90	88.6	32.24	18.00	2.39				
3	82	20/12/2016	CH:3+770 LHS	100	96.4	68.2	51	32.8	27.5	17.3	6.8	18.80	89.0	32.12	14.86	2.06		·		
4	83	21/12/2016	CH:3+270 to 3+370 LHS	100	97.1	71.3	53.5	34.7	28.7	17.8	7.2	18.23	88.1	32.32	16.29	1.39		1		
5	84	21/12/2016	CH:3+370 to 3+470 LHS	100	97.3	71.2	52.6	33.4	26.6	16.8	6.1	18.00	87.3	32.16	17.71					
6	85	21/12/2016	CH: 3+370 to 3+470 LHS	100	97.3	71.2	52.6	33.4	26.6	16.8	6.1	18.6	87.6	32.24	18.29	1.56				
7	86	21/12/2016	CH: 3+570 to 3+670 LHS	100	97.1	70.9	51.2	32.7	25	16.1	6.4	19.31	89.1	32.56	17.14	1.				
8	87	21/12/2016	CH: 3+670 to 3+770 LHS	100	97.4	74.9	50	31.7	23.8	16.0	6.5	18.82	88.5	32.76	20.00	1.77				
9	88	21/12/2016	CH: 3+670 to 3+770 LHS	100	96.2	73.6	46.5	30.3	22.5	15.2	6.5	17.24	88.1	32.96	19.43					
10	89	21/12/2016	CH: 3+870 to 3+970LHS	100	96.6	76.2	48.5	31.0	22.4	14.7	6.0	17.2	87.8	33.16	18.00	1.93				
11	90	21/12/2016	CH: 3+970 to 4+070 LHS	100	96.6	72.9	47.9	36.6	30.2	19.5	5.6	18.25	86.6	32.88	17.43	1.78				
12	91	21/12/2016	CH: 3+970 to 4+070 LHS	100	96.3	72.7	47.8	36.5	30.0	19.4	5.6	18.1	85.2	33.24	16.00	1.86				
	Requ	uired Specif	acation	100	85-100	62-92	40-70	26-55	21-53			≤ 25	≥ 80	≤ 35	≤ 25	Max 12%	≥80			

REMARKS: Crushed Stone base

SMEC-Brisbane-AQUA-CEMAT-BDA

Approved by C.S.E

Test Checked by A.C.S.E

Consultant Reps

CTCE-KALIKA J/V

Submit by Project Manager

Test Conducted by Q.C Manager

Consultant Reps

ANNEX-8

: CONTRACTOR'S PROGRESS REPORT-DECEMBER, 2016

Government of Nepal Biratnagar Sub-Metropolitan City, Biratnagar, Nepal Secondary Towns Integrated Urban Environment Improvement Project (STIUEIP)

Project Implementation Unit(PIU)
Biratnagar, Nepal

Project Directorate (ADB)

Sewerage and Drainage Network, Wastewater Treatment Plant, and Road and Lanes Improvement Subproject STIUEIP/W/BRT/ICB-01

<u>Monthly Progress Report – 37</u>

December 2016

Consultants:

in association with
Brisbane City Enterprise Pty Ltd – Australia
AQUA Consultant and Associates Ltd – Bangladesh
Building Design Authority – Nepal
CEMAT Consultants – Nepal

Submitted by:

TECTION OF THE CONTROL OF THE CONTR

Table of Contents

- 1. Introduction
- 2. Project Component
- 3. Salient Feature
- 4. Scope of Work
- 5. Physical Progress (Achievement in up to this Month)
 - a. Storm Drainage and Road Side Drain
 - b. Sewerage
 - c. Road and lane
 - d. Waste Water Treatment Plant
 - e. Production of Precast Slab at yard
 - f. Production of precast chamber element at yard
 - g. Hume pipe Production
- 6. Financial Progress and Cash Flow
- 7. Details of Safeguard Activities
- 8. Key Issues and Remarks
- 9. Resource Plan
 - a. Details of Contractor's Personnel's at site
 - b. Equipments at Site
 - c. Material at Site
- 10. Conclusion

ANNEX

- i. Organization Chart
- ii. Site Photographs
- iii. Lab Reports

1 Introduction

Secondary Towns Integrated Urban Environmental Improvement Project (STIUEIP), Department of Urban Development and Building Construction (DUDBC), under the Ministry of Urban Development (MUD) through the Government of Nepal (GoN) has received the loan from Asian Development Bank (ADB) Loan 2650-NEP STIUEIP includes construction of Sewerage and Drainage Network, Wastewater Treatment Plant, Road and Lanes Improvement. The main purpose of this project is to fascinate with better improvement of greenery urban city.

2 Project Components

The Town Integrated Urban Environmental Improvement Project (STIUEIP) consists of following Sub-Project Components:

Drainage Network

The main aim of drainage network is to drain out storm water to the river side during the monsoon season and minimized the water pounding in the city

> Sewerage Network

Management of household sewerage project to the treatment plant in connection with chambers, manhole and pipes

➤ Wastewater Treatment Plant Subproject

Treatment of sewer product in plant located at Jatuwa. The treated water is drain out to singhya river and solid waste project used as fertilizer in farming.

➤ Road and Lanes Improvement Subproject

Existing road sections at different part of Biratnagar will be upgraded by extending road width and providing footpath.

➤ Road Side Drain and Water supply Network (Additional)

Road side drain and water supply network is addition of scope of work in this project which was not included in original contract.

3 Salient Feature

A. General Features	
	Government of Nepal(GoN),
	Ministry of Urban Development
Employer	Department of Urban Development and Building Construction
Funded By	Asian Development Bank & Government of Nepal
	Biratnagar Sub-Metropolitan City
	Secondary Towns Integrated Urban Environmental Improvement
Project	Project(STIUEIP)
Contract No.	STIUEIP/W/BRT/ICB-01
Location	Biratnagar Sub-Metropolitan City
Consultant	SMEC-Brisbane-AQUA-BDA-CEMAT
Contractor	CTCE-KALIKA JV.
Commencement Date	December 8th, 2013
Original Completion Date	25 May 2016
Revised Completion Date	09 March 2017
Original Contract Period	900 Days
Original Contract amount	
with PS & VAT	NRs 2,391,332,117.06
Revised Contract amount	
after VO # 02. with PS &	
VAT	NRs 2,719,617,069.21

4 Scope of works

The activities to be undertaken according to the Contract Agreement are as follows:

- a. To carry out all necessary topographic surveys, soils investigations, laboratory analysis or related investigations where necessary to supplement the data provided by the Employer.
- b. To prepare working drawings for all elements of the Works.
- c. To undertake all steps necessary for upgrading of roads and bridges, all related to access to the Site, or other related matters, where his opinion differ significantly from
- d. Preparation of stockyards for pipes, fittings and other materials and equipment.
- e. To take all steps necessary for the temporary or permanent diversion of services and the maintenance of services during the execution of the Works, including diversion of overhead with underground power lines, telephone ducts, water supply mains and distribution lines (pipes), sewers and other underground services as required along the route of the pipelines.
- f. To supply all pipes, valves, fittings and other materials and equipment required for construction of the Works. The Contractor's supply items may include manufacture, collection, transportation and delivery to Site. The Contractor will be responsible for ensuring that all procedures are adequately covered and that the materials fully confirm to the Contract requirements. These responsibilities will include all necessary charges or dues related to insurance, freight, taxes (including customs and excise duties, surcharges etc.) and all testing and inspections for quality control.
- g. To provide all necessary staff (including civil engineers, specialists, administrators, site supervision personnel) and workmen (including all necessary specialists, operators, tradesmen, artisans etc. in addition to semi-skilled and unskilled workers)necessary for execution of the Works through to completion. Where appropriate, the contractor shall provide all suitable facilities and accommodation for the staff and workmen and he shall make provision for all costs related to such provisions and for medical, re-location, taxes or other expenses.
- h. To provide all equipment, machinery, tools etc. and related spares, maintenance and consumables necessary for implementation of the Works.
- To provide all site offices, stores, workshops and facilities necessary for use by the Employer,
 Engineer and support staff and for the Contractor himself and his supporting staff
- j. To undertake all operations necessary to complete the Works. These operations shall include: excavation, provision, haulage and installation of suitable bedding and backfill material and disposal of surplus excavated material; distribution, laying adjoining of pipes; installation of

all special pipe work, valves etc. and construction of all related concrete or other activities together with all testing and disinfection of completed Works. The Contractor's attention is drawn to the restricted working space between Rajbanshi Chowk to Rani, Biratnagar where the sewer pipes, drains and road/lane is to be laid in a narrow road. In this section work in addition to that associated with the trunk main, will include but not be limited to, removal and replacement of a sewer laid in the road and reinstatement of road surface.

- k. To liaise with other contractors on the site and to ensure harmonious co-operation with them so that conflicts are avoided and areas of common interest, constructional interface or potential overlaps are addressed without cost to the Employer or delays in completion.
- To prepare documentary records of the Works in the form of "as-built" drawings and GIS
 data, schedules etc., and to train staff of the Employer in the procedures for laying pipes,
 valves and fittings.
- m. All the above activities shall be performed in a professional way and with good engineering and/or constructional practice. Upon completion of the Works the scheme shall be fully operational with minimum disruption or inconvenience to interested parties, including land owners, and there shall be no outstanding matters requiring attention.

5. Physical Progress (Achievement till the month)

A. Storm Water Drain and Road Side Drain Sub-Project (Work Progress till the date)

SN	Description	Unit	Total Up to	This	Total Up	Remarks
			Previous Month	Month	to this	
					Month	
1	Northern Part	Rm	23,776.56	140	23916.56	
2	Southern Part	Rm	5669.00	0	5669.00	
3	Road Side Drain	Rm	16,402.3	2277.1	18679.4	

B. Sewerage Sub-Project (Work Progress till the date)

SN	Description	Unit	Total Up to	This	Total Up	Remarks
			Previous Month	Month	to this	
					Month	
1	Hume Pipe	Rm	9053.3	1500	10553.3	
2	HDPE Pipe	Rm	20599.25	1100	21699.25	
3	uPVC Pipe	Rm	2506.7	1517.82	4024.52	

Contractor: CTCE-KALIKA J.V. Site Office: Katahari, Judi

	4	Manhole (Brick and RCC)	Nos	934	56	990	
	5	Sewer Inlet	Nos.	494	484	978	
Ī	6	House Connection	Nos.	102	247	349	

C. Road Works (Work Progress till the date)

SN	Description	Unit	Total Up to	This	Total Up to Remar	ks
			Previous Month	Month	this Month	
1	Road improvement at R2 Road	Rm	2096	986.00	3082.00	
2	Gravel Road	Rm	0	1580	1580.00	

D. Wastewater Treatment Plant Sub-Project (Work Progress till the date)

S.N.	Description of Work	This	Total	Program	for Next	Remarks
		month	Length/Nos	Month		
1	Excavation of Ponds-	0	3 nos	Slope	preparation	
	Anaerobic			and cla	y lining	
2	Excavation of Ponds-	0	2 nos	Slope	preparation	
	Facultative			and cla	y lining	
3	River Training Works	0	515m			
4	Boundary wall construction	105	1050 m			
5	Office cum lab building,	All co	mplete except			
	WWTP, Jatuwa	finishing works				
5	Workshop Building &	All	complete except			
	Generator/Changing	finis	hing works			
	Building, WWTP, Jatuwa					
6	Sump Well	Unde	er construction			
7	Sludge Drying bed	Unde	er construction			

D. Production of Precast Items from Slab Casting Contractor's Yard, Katahari

SN	Description	Unit	Total Up to	This	Upto this	Remarks
			Previous	month	month	
			Month			
1	Slab	Nos	90780	625	91405	
2	Precuts	Nos	11209	0	11209	
3	Kerbstone	Nos	23135	0	23135	

F. Production of Precast Chambers at Contractor's Yard Katahari

SN	Description	Unit	Total Up to	This	Up to this	Remarks
			Previous	month	month	
			Month			
1	Manhole	Nos	2200	0	2200	
2	Sewer Inlet	Nos	1649	425	2074	
3	House Connection Chamber	Nos	1346	0	1346	

G. Hume Pipe Production from Hume Pipe Production Factory, Itahari

SN	1	2	3	4	5	6	7	8	9	10	11
Diameter	200mm ?	300mm ?	350mm ?	400mm ?	450mm ?	500mm ?	600mm ?	700mm ?	900mm ?	1000mm ?	1600mm ?
No of Moulds	38	3	2	2	2	3	8	8	2	4	2
Production Til											
Previous											
Month	2123	328	216	370	84	551	963	1296	278	1011	373
This Month											
Production	0	0	0	0	0	0	0	0	0	0	0
Total											
Production	2123	328	216	370	84	551	963	1296	278	1011	373

H. Next month programmer

- 1. RCC and Brick masonry Road side drain.
- 2. Base preparation and asphalt pavement, footpath and kerbstone work in R2 road.
- 3. Laying of sub base in various road

- 3. Construction of slump well, sludge drying bed, compound wall
- 4. Slope preparation of anaerobic and facultative pond with clay lining and riprap
- 4. Precast production at contractor's yard.
- 5. Sewer works with installation of sewer inlet and house chamber

6. Financial and Physical Progress

Financial Progress

Installment Number	Total Bill Amount With Vat and PS(NRs)	Net Payble Amount (NRs.)	%	Remarks
IPC 01		200,940,000.00		Advance Payment 01
IPC 02	29,553,479.92	27,853,500.98		IPC 2
IPC 03	50,406,775.75	47,507,270.95		IPC 3
IPC 04	44,819,505.68	42,241,392.52		IPC 04
IPC 05	23,380,168.96	22,035,291.99		IPC 05
IPC 06	90,796,339.68	85,573,541.38		IPC 06
IPC 07	80,854,600.52	76,203,672.17		IPC 07
IPC 08	122,334,488.86	115,297,549.23		IPC 08
IPC 09	116,092,187.14	109,414,317.97		IPC 09
IPC 10	132,327,417.89	124,715,663.77		IPC 10
IPC 11	169,853,829.07	160,083,476.07		IPC 11
IPC 12	23,121,515.46	16,931,906.24		IPC 12
IPC 13	85,563,926.44	62,658,539.06		IPC 13
IPC 14	163,562,505.71	119,776,967.67		IPC 14
IPC 15	139,008,112.96	101,795,764.14		IPC 15
IPC 16	137,640,413.95	100,794,196.94		IPC 16
IPC 17	135,118,714.02	98,947,553.85		IPC 17
IPC 18	39,288,088.98	28,770,702.32		IPC 18
IPC 19	76,081,596.87	55,714,620.72		IPC 19
IPC 20	74,522,638.96	54572994.46		IPC 20
IPC 21	152,577,081.95	118,075,775.84		Under process
Total amount of Ipc=	1,886,903,388.77	1,769,904,698.27	69.93%	Progress Percentage WRT Contract amount after VO .02 With
				Vat and PS

Contractor: CTCE-KALIKA J.V. Site Office: Katahari, Judi

Physical Progress

	<u>Physical Progress</u>									
Installment Number	Total Bill Amount With Vat and PS(NRs)	Net Payble Amount (NRs.)	%	Remarks						
IPC 01		200,940,000.00		Advance Payment 01						
IPC 02	29,553,479.92	27,853,500.98		IPC 2						
IPC 03	50,406,775.75	47,507,270.95		IPC 3						
IPC 04	44,819,505.68	42,241,392.52		IPC 04						
IPC 05	23,380,168.96	22,035,291.99		IPC 05						
IPC 06	90,796,339.68	85,573,541.38		IPC 06						
IPC 07	80,854,600.52	76,203,672.17		IPC 07						
IPC 08	122,334,488.86	115,297,549.23		IPC 08						
IPC 09	116,092,187.14	109,414,317.97		IPC 09						
IPC 10	132,327,417.89	124,715,663.77		IPC 10						
IPC 11	169,853,829.07	160,083,476.07		IPC 11						
IPC 12	23,121,515.46	16,931,906.24		IPC 12						
IPC 13	85,563,926.44	62,658,539.06		IPC 13						
IPC 14	163,562,505.71	119,776,967.67		IPC 14						
IPC 15	139,008,112.96	101,795,764.14		IPC 15						
IPC 16	137,640,413.95	100,794,196.94		IPC 16						
IPC 17	135,118,714.02	98,947,553.85		IPC 17						
IPC 18	39,288,088.98	28,770,702.32		IPC 18						
IPC 19	76,081,596.87	55,714,620.72		IPC 19						
IPC 20	74,522,638.96	54572994.46		IPC 20						
December 2016	152,577,081.95	118,075,775.84		IPC 21						
Work in Progress (Precast elements, withheld quantity, etc)	100,00,0000.00									
Total amount =	1,986,903,388.77	1,769,904,698.27	73.05%	Progress Percentage WRT Contract amount after VO .02 With Vat and PS						

7. Details of Safeguard activities

Till the date no such issues have been faced relating to the Social, Environmental and Resettlement matter.

8. Key Issues and Remarks

Following issues were raised in this month

- Submitted Claim No.01 to 07 has not addressed up to this month.
- ➤ Uncertain of contract work due to lack of BoQ item such as; Reinforcement, Brickwork, M25 concrete, Shoring etc. As a result, contractor's resources (manpower, equipment and plant) became idle which have already notify from contractor's letter ref no.071/72-368(site) dated 12 April 2016,ref no.073/74-21(site) dated 26 September 2016 and PCO letter ref no.5.1/073/74/77 of Minutes of meeting dated 22 September 2016.
- > Delay in approval of Variation Order No. 3
- > Site security and local threats
- > Delay in work due to position of existing supply pipe line in alignment of road side drain and sewer line
- > Scarcity of quality brick in the market / no supply of brick from bhatta (factory)

Mobilized Resource

A. Details of Contractor's Personnel at Site

S.N.	Designation	No.	Remarks
1	Project/ Contract Manager	1	
2	Planning/ Construction Engineer	1	
3	Construction Engineer	1	
4	Site Engineers	5	
5	Quality Control Manager	1	
6	Office/ Bill Engineer	1	
7	Junior Engineer	10	

8	Sub-Overseer	6	
9	Senior Site Supervisor/Safety	1	
	Manager		
10	Accountant/ Office Manager	1	
11	Lab Assistant	3	
12	Site Supervisor	5	
13	Store Keeper	4	
14	Light Drivers	6	
15	Machine Operator	14	
16	Other Supporting Staffs	18	
17	Skilled Labors	>130	
18	Unskilled Labors	> 350	

B. <u>Details of Equipment at Site / Contractor's yard</u>

				Working Sta	tus	
S.N.	Particular	Model/Type	Capacity	No of used Equipment	Status	Remarks
A	Vehicle and Equipment					
A.1	Excavators					
	Komatsu Long Boom PC200	PC200		1	Good	
	Komatsu Excavator PC200	PC200		2	Good	
	Komatsu Excavator PC120	PC 120		1	Good	
	Hundai Excavator PC200	PC 200		1	Good	
	Cat Excavator 320	Caterpillar		1	Good	
	Long Boom excavator			1	Good	
A.2	JCB					
	JCB Hydra	JCB		1	Good	
	CAT Loader	CAT		3	Good	
	CAT Backhoe	CAT		3	Good	
A.3	Crane/Teller					
	Crane with Teller			1	Good	
	Teller			1	Good	
A.4	Water Tanker					
	Water Tanker		12000 Lt.	1	Good	
	Water Tanker		6000Lt	1	Good	
A.5	Tractors/Tipper					

				Working Status		
S.N.	Particular	Model/Type	Capacity	No of used Equipment	Status	Remarks
	Tractors	Indian	3 m ³	10	Good	
	Tipper		15 m ³	4	Good	
A.6	Service Vehicle				Good	
	Jeep	Pajero	5 door	1	Good	
	Pickup	Toyota	4 door	1	Good	
	Motorbike	125CC		10	Good	
A.7	Other Equipment and Tools					
	Kerb Stone Machine Set			1	Good	
	Generator	Jackson	125KVA	1	Good	
	Generator	Kirloskar	20KVA	2	Good	
	Generator	Kirloskar	10KVA	1	Good	
	Generator	Honda	5KVA	1	Good	
	Generator	Super	5KVA	1	Good	
	Generator	Lutian	2.5 KVA	1	Good	
	Welding Machine	Oswal,India	650amp	1	Good	
	Welding Machine		350amp	1	Good	
	Welding Machine		250amp	1	Good	
	Diesel tank with Pump		60000 Ltr.	1	Good	
	Stand Drill Machine	India	1 HP	1	Good	
	Gas Cutter Set			1	Good	
	Pipe Cutter			1	Good	
	Hand Grinder			1	Good	
	Plate Compactor			2	Good	
	Monkey Jumper			3	Good	
В	Concreting Unit					
	Electric Vibrator with Needle			10	Good	
	Bar Bending Machine		4 ton/hr	3	Good	
	Bar Cutter Machine		4 ton/hr	3	Good	
	Manual Mixture Machine			6	Good	
C	Roller					
	Pneumatic Tyre Roller			1	Good	
	Steel Roller			1	Good	
	Asphalt Concrete Production					
	Asphalt Concrete Plant		50 ton/hr	1	Good	
D	Decanter			1	Good	
	Asphalt Paver Machine			1	Good	

				Working Star	tus	
S.N.	Particular	Model/Type	Capacity	No of used Equipment	Status	Remarks

9.Conclusion

Vo#3 and Claim processing is causing delima to accelerate the contract work.

ANNEX

Photographs of the Month

Picture 1 Repair and maintenance work of water supply pipe

Picture 2 Construction of Sewer line

Picture 3 Cleaning of highway after Hume pipe installation

Picture 4 Slope preparation of anaerobic pond on WWTP.

LAB REPORT

SUMMARY

SECONDARY WNS INTEGRATED URABAN ENVIRONM TAL IMPROVEMENT PROJECT BIRATNAGAR SON METROPOLITANT City STIUEIP

Monthly Laboratory Testing Report

(For The Month OF DECEMBER 2016)

Consultants:SMEC-Brisbane-AQUA-CEMAT-BDA

Contractors: CTCE- KALIKA J/V

			Total No. of Test		Test Performed	for this month	1	Total No. of Test	
S. No.	Description of Material	Type of test	upto previous month	No. of Tests	Passed	Failed	Retest Recommended	upto This month	Remarks
1	Granular Material/Gravel material	Sieve analysis	43	37	37	0		80	
2	SUB GRADE Preparation	MDD & OMC	12	4	4	0		16	
	asPere Specifacation	Field density	126	138	138	0		264	
		C.B.R	14	4	4	0		18	
3	BRICK WORK	Water Absorption	195	0	0	0		195	
	Required Test	Compressive Strength	2221	300	300	0		2521	
4	Masonry Mortar (CM 7.05)	Compressive strength	1989	1068	1068	0	Q-III-II	3057	
5	CONCRETE AGGREGATE Coarse aggregate (20 mm)	Sieve analysis (20 mm)	282	28	28	0		310	
		LAA	198	25	25	0		223	
		Specific Gravity	16	0	0	0		16	
		FI	211	25	25	0		236	
		ACV	225	25	25	0		250	
	Fine aggregate (Sand)	Sieve analysis	250	44	44	0		294	
6	CONCRETE MIX DESIGN	Concrete mix Design	76	0	0	0		76	
	ConcreteM15/20,M20/20	Compressive strength	456	0	0	0		456	
	M25/20,&M30/20	Slump test	73	0	0	0		73	

SECONDARY WNS INTEGRATED URABANENVIRONI. NTAL IMPROVEMENT PROJECT BIRATNAGAR Sub-Metropolitant City STIUEIP

Monthly Laboratory Testing Report

(For The Month OF DECEMBER 2016)

Consultants:SMEC-Brisbane-AQUA-CEMAT-BDA

Contractors: CTCE- KALIKA J/V

S. No.	Depositation of Material	T	Total No. of Test		Test Performed	d for this mont	1	Total No. of Test	
5. NO.	Description of Material	Type of test	upto previous month	No. of Tests	Passed	Failed	Retest Recommended	upto This month	Remarks
7	CEMENT Required Test								
	OPC Cement	Setting time	164	30	30	0		194	
		Normal Consistency	164	30	30	0		194	
8	CONCRETE								
	Work Mix Test M15,M20,M25,M30	Compressive strength	9301	1044	1044	0		10345	
9	REINFORCEMENT	Required Test							
	Reinforcement tore steel	As per Specifacation	80	0	0	0		80	
10	PAVEMENT MATERIALS								
	Sub Base Materials	Sieve analysis	31	45	45	0		76	
		MDD & OMC	11	2	2	0		13	
		CBR	7	2	2	0		9	
		Field density	102	66	66	0		168	
11	CS Base	Sieve analysis	60	12	12	0		72	
	Crushed Stone Base	MDD & OMC	8	1	11	0		9	
	Material Laying	C.B.R	6	1	1	0		7	
		FI & C.Ratio	64	12	12	0		76	
		LAA	65	12	12	0		77	
		sss	10	9	9	0		19	
		AIV	64	12	12	0		76	
		Field Density & OMC	125	24	24	0		125	149

SECONDARY

WNS INTEGRATED URABAN ENVIRON .NTAL IMPROVEMENT PROJECT BIRATNAGAR Sup-Metropolitant City STIUEIP

Monthly Laboratory Testing Report

(For The Month OF DECEMBER 2016)

Consultants:SMEC-Brisbane-AQUA-CEMAT-BDA

Contractors: CTCE- KALIKA J/V

S. No.	Description of Material	Type of test	Total No. of Test		Test Performed	for this mont	n	Total No. of Test	
	2 con paon of material	Type of test	upto previous month	No. of Tests	Passed	Failed	Retest Recommended	upto This month	
12	ASHPHALT CONCRETE	Sieve analysis	9	0	0	0		9	
	Combine Mixed	FI	8	0	0	0		8	
		ACV	8	0	0	0		8	
	Individual Ca&FA Test Mix Design	LAA	8	0	0	0		8	
		Sp gravity	4	0	0	0		4	
13	BITUMEN TEST	Penetration at25.c	2	0	0	0		2	
	80/100 Bitumen	Softeing point(ring ball)	2	0	0	0	1	2	
	As per DORbook section	Flash point/Fire Point	2	0	0	0		2	
	600 Table 6.14/is 73	Ductility at25.c	2	0	0	0		2	
-		Specific at 25.c	2	0	0	0		2	
		Water Content	2	0	0	0		2	
		Loss on Heating for 5 hrs	2	0	0	0		2	
		Pen-of residue afte loss on Heating	2	0	0	0		2	
		Solubility in tricloroethylene	2	0	0	0		2	
14	Humpipe Test	Three Edge Bearing Load Test	7	0	0	0			200mm to 1600mm 1 eac
15	MARSHALL MIX DESIGN	WEARING COURSE	1	0	0	0		1	
6	Marshall Stability Test	Bulk density	60	0	0	0		60	
		Stability	60	0	0	0		60	
		Flow	60	0	0	0		60	
		Air voides	60	0	0	0		60	

SECONDARY WNS INTEGRATED URABAN ENVIRON NTAL IMPROVEMENT PROJECT BIRATNAGAR Sub-International City STIUEI

STIUEIP

Monthly Laboratory Testing Report

(For The Month OF- DECEMBER 2016)

Consultants:SMEC-Brisbane-AQUA-CEMAT-BDA

Contractors: CTCE-KALIKA J/V

S. No.	Description of Material	Type of test	Total No. of Test		Test Perform	ned for this mont	h	Total No. of Test	
22.37	2000 pton of material	Type of test	upto previous month	No. of Tests	Passed	Failed	Retest Recommended	upto This month	Remarks
		Bitumen extraction	20	0	0	0		20	
		Voids in Mineral Agg	60	0	0	0		60	
		Job mix in AC Plant	22	0	0	0		22	
17	BITUMEN SPREAD TEST								
	Prime coat	Application rate	20	0	0	0		20	
	Tack coat	Application rate	10	0	0	0		10	
18	Machines/Equipment Caliberation of compressive	1000KN Manuali	2	0	0	0		2	
	Testing machine	500 KN Manuall	2	0	0	0		2	
	C.B.R Machine	50KN/30KN	2	0	0	0		2	
	Marshall Stability Machine	50KN/25KN	2	0	0	0		2	
19	MISCELLANEOUS								
	G.I Wire(Gabion Boxes)		5	0	0	0		5	
	Factory Test Report of Cement		8	0	0	0		8	
	Factory Test Report of Iron Steel		4	0	0	0		4	
	Factory Test Report of 80/100 Bitumen		2	0	0	0		2	
	Factory Test Report of UPVC/HDP Pipe		2	0	0	0		2	
	UPVC/HDP Pipe Test Result		2	0	0	0		2	
timum I	= Max Dry Dennsity Moisture Content	LAA = Los Angeles Abrasio SE=Sand Equivqlent				nte Impact Value Mix Formula			hing Ratio
V = Agg	lium Sulphate Soundness gregtae Crushing Value nia Bearing Ratio	SMEC-Brisbane-AQUA-B Approved by C.S.E Checked by A.C.S.E Consultant Reps	DA-CEMAT			Submitted by Prepaid by	ALIKA J/V by Project Man Q.C Manager actors Reps	ager /	

Secondary Town Integrated Urban Environmental Improvement Project Biratnagar Sub-Metropolitan city

Contract Package: STIUEIP/W/BRT/ICB-01

DAILY WEATHER RECORD

FOR THE MONTH OF December 2016

Date			V	VEATHER Re	cord		Temp.c		
	Sunny	Foggy	Cloudy	Morning Rain HRS	Night Rain Hrs.	Day Rain Hrs.	9:00 AM	5:00 PM	Rain Fall MM
1		Foggy					21.2	19.6	
2	-	Foggy					22.6	20.2	
3		Foggy					22.4	21.4	
4		Foggy					19.5	22.6	
5		Foggy					19.1	20.5	
6		Foggy					20.2	19.4	
7	14	Foggy			L. V. L. L. W.		19.8	20.1	
8		Foggy	1				16.9	20.4	
9		Foggy					19.8	17.2	
10		Foggy					18.4	17.2	1
11		Foggy			4		21.2	17.4	
12		Foggy					14.8	16.2	
13		Foggy					14.2	18.2	
14		Foggy			1 1 1		14.1	18.1	
15	Sunny				** Transition ** - 1		17.2	19.4	
16	Sunny				1		18.1	19.6	
17	Sunny						19.2	18.8	
18		Foggy					20.2	19.2	
19		Foggy					18.8	17.5	
20		Foggy					19.2	18.6	
21		Foggy					19.8	18.8	
22		Foggy		4 5 4			20.2	19.4	+ 4
23		Foggy					20.4	19.6	
24		Foggy					19.8	19.2	
25		Foggy					19.4	19.2	
26		Foggy					19.8	19.2	
27	Sunny						19.5	20.2	
28	Sunny						18.6	22.2	
29	Sunny				-		19.2	20.4	
30	Sunny					*' - 1	18.8	19.8	
31	Sunny						20.2	19.6	

SMEC-Brisbane-AQUA-CEMAT-BDA

Approved By C.S.E

Record Checked By A.C.S.E

Consultant Reps

CTCE-KALIKA J/V

Submitted By Project Manager

Record Reported By O.C. Manager of Contractor Reps

SECONDARY TOWNS INTEGRATED URABAN ENVIRONMENTAL IMPROVEMENT PROJECT

Biratnagar Sub-Metropolitant City

P.G-1

S.N.	DESCRIPTION / SOURCE	LAB		Grain Siza	Distributio	on	FI	LAA	ACV	REMARKS
	BEGGINI HON TOOKOE	REF. NO.	25	20	10	4.75	%	%	%	INCIMARKA
1		MR 253	100	96.46	34.19	8.04	13.15	31.36	19.8	Aggregates
2		MR 254	100	97.32	30.52	5.40	12.74	32.80	19.9	Source
3	From Contractor Yard Stock	MR 255	100	97.46	29.56	5.44	12.15	32.68	18.7	Om shree
4	From Contractor Fard Stock	MR 256	100	98.14	32.74	4.78	11.74	32.84	18.9	CRUSHER
5		MR 257	100	97.34	32.10	5.36	11.44	32.60	18.8	
6		MR 258	100	97.00	33.80	4.40	12.83	32.68	18.8	PLANT
7		MR 259	100	96.90	30.72	3.74	12.52	32.24	18.7	
8	P. 2 Line Compands Work	MR 260	100	98.56	31.38	3.68	13.04	32.52	18.8	
9	R-3 Line Concrete Work	MR 261	100	98.68	38.28	4.00	13.41	32.60	19.0	
10		MR 262	100	98.48	34.32	3.32	13.04	32.00	19.2	
, ,	Section 900:IS 383-1970 Required		100	95-100	25-55	0-10	Less 15%	Less 35%	Less 30%	

Test Checked by A.C.S.E

Consultant Reps

Test conducted by Q.C Manager

S.N.	DESCRIPTION / SOURCE	LAB		Grain Siza	a Distributi	ion	FI	LAA	ACV	
	- Control (Green Green Control	REF. NO.	25	20	10	4.75	%	%	%	REMARKS
11	RANI LINE Concrete work	MR 263	100	98.41	35.31	3.94	13.56	31.76	19.4	Aggregates
12		MR 264	100	98.00	31.05	3.67	13.67	31.56	19.3	Source
13		MR 265	100	96.98	31.42	3.34	12.52	31.68	18.9	Om shree
14	R-3 LINE Concrete work	MR 266	100	97.88	31.35	3.23	13.22	31.56	19.3	CRUSHER
15		MR 267	100	98.59	39.64	3.60	12.96	31.80	19.3	
16		MR268	100	98.84	42.40	2.86	13.09	31.44	19.0	PLANT
17	R-22 LINE Concrete Work	MR 269	100	97.57	42.34	3.81	12.78	31.36	18.6	
18		MR 270	100	98.21	44.43	2.82	13.00	31.12	19.4	
19	R-21 Line Concrete work	MR271	100	97.92	34.38	3.24	13.89	31.44	18.6	
20	and deficite work	MR 272	100	98.28	37.31	3.35	12.56	31.32	18.9	
, S	ection 900:IS 383-1970 Required		100	95-100	25-55	0-10	Less 15%	Less 35%	Less 30%	
SMEC-	Brisbane-AQUA-CEMAT-BDA				CTCE-KA	LIVA IAI				

Approved by CSE

Test Checked by A.C.S.E

Consultant Reps

CICE-KALIKA J/V

Submitted by Project Manager

Test conducted by Q.C Manager

SECONDARY TOWNS INTEGRATED URABAN ENVIRONMENTAL IMPROVEMENT PROJECT Biratnagar Sub-Metropolitant City P.G-3 Summery of Concrete Crushed Aggregate 20mm down For The Month of NOVEMBER 2016 LAB Grain Siza Distribution FI LAA ACV

S.N.	DESCRIPTION / SOURCE	LAB		Grain Siza	Distributi	ion	FI	LAA	ACV	
		REF. NO.	25	20	10	4.75	%	%	%	REMARKS
21	R-21 Line Concrete work	MR 273	100	98.06	32.56	3.66	12.07	32.92	19.2	Aggregates
22		MR 274	100	97.80	35.26	3.28	13.33	32.64	19.0	Source
23	RANI LINE Concrete work	MR 275	100	97.57	35.98	3.23	12.93	32.84	19.0	Om shree
24		MR 276	100	98.20	36.16	4.12	13.37	32.24	18.5	CRUSHER
25		MR 277	100	98.11	41.67	2.77	13.44	33.20	19.7	
26	R-27 Line Concrete work	MR 278	100	97.33	39.02	2.91	12.74	32.88	20.1	PLANT
27	The solution work	MR 279	100	96.81	37.34	4.19	13.85	32.68	19.8	
28		MR 280	100	98.03	44.39	2.51	13.07	33.04	19.9	
29	From Contractor stock YAARD	MR281	100	98.10	45.14	2.83	13.59	33.20	19.6	
30	TARKE	MR 282	100	98.18	40.85	3.35	13.70	33.24	19.8	
1	Section 900:IS 383-1970 Required		100	95-100	25-55	0-10	Less 15%	Less 35%	Less 30%	

SMEC-Brisbane-AQUA-CEMAT-BDA

Approved by CSE

Test Checked by A.C.S.E

Consultant Reps

CTCE-KALIKA J/V

Submitted by Project Manager

Test conducted by Q.C Manager

SECONDARY TOWNS INTEGRATED URABAN ENVIRONMENTAL IMPROVEMENT PROJECT

Biratnagar Sub-Metropolitant City

P.G-4

	DESCRIPTION / SOURCE	LAB	(Grain Siza	Distributio	n	FI	LAA	ACV	REMARKS
S.N.	DESCRIPTION / SOURCE	REF. NO.	25	20	10	4.75	%	%	%	
31		MR283	100	97.19	38.19	4.16	13.07	33.16	19.7	Aggregates
32		MR 284	100	98.00	39.92	1.31	13.52	33.52	20.1	Source
33		MR 285	100	97.10	39.93	2.32	12.85	33.68	20.2	Om shree
34		MR 286	100	97.90	32.35	3.26	12.78	33.48	20.1	CRUSHER
35	FROM CONTRACTOR STOCK YARD	MR 287	100	98.46	38.59	4.11	13.30	31.32	20.1	
36		MR 288	98.15	98.15	37.75	3.31	13.96	31.60	19.6	PLANT
37		MR 289	100	96.99	34.16	3.26	13.41	31.24	19.4	
38		MR290	100	97.10	36.01	4.48	13.74	31.12	19.2	
39	*	MR 291	100	97.61	40.75	3.31	13.48	32.96	18.9	
40		MR 292	100	98.05	41.82	4.42	13.89	32.64	18.8	
1	Section 900:IS 383-1970 Required		100	95-100	25-55	0-10	Less 15%	Less 35%	Less 30%	-

Approved by CSE

Test Checked by A.C.S.E

Consultant Reps

Submitted by Project Manager

Test conducted by Q.C Manager

					ub-Metrop	Charles State Stat				P.G-4
Su	mmery of Concrete Crushe	d Aggre	gate 20	mm do	wn For	The Mo	onth of N	NOVEME	BER 201	6
5.N.	DESCRIPTION / SOURCE	LAB		Grain Siza	Distributi	on	FI	LAA	ACV	DEMARK
		REF. NO.	25	20	10	4.75	%	%	%	REMARK
41		MR 293	100	98.07	38.70	2.91	13.44	33.08	19.1	Aggregates
42		MR 294	100	97.32	35.21	3.81	13.04	32.52	18.9	Source
43		MR 295	100	98.02	36.95	4.10	13.44	33.08	18.8	Om shree
44	FROM CONTRACTOR STOCK YARD	MR 296	100	97.69	38.21	4.23	13.89	32.72	18.7	CRUSHER
45	a see a	MR 297	100	96.76	40.31	4.72	13.44	32.16	19.3	
46		MR 298	98.15	97.01	37.63	3.89	13.63	32.24	19.3	PLANT
47		MR 299	100	96.07	40.24	5.36	13.11	32.40	19.3	
48		MR 300	100	96.38	32.63	4.65	13.67	32.58	19.4	
49 s	sample from S-9 line concrete work	MR 301	100	99.27	44.13	2.88	13.63	32.38	19.0	
50 s	sample from R-28 Line Concrete work	MR 302	100	97.71	43.05	5.74	13.89	32.40	19.0	
i.	Section 900:IS 383-1970 Required		100	95-100	25-55	0-10	Less 15%	Less 35%	Less 30%	
Appr Test	C-Brisbane-AQUA-CEMAT-BDA oved by CSE Checked by A.C.S.E sultant Reps			è		d by Proje	ect Manage Q.C Mana		11/	

SECONDARY TOWNS INTEGRATED URABAN ENVIRONMENTAL IMPROVEMENT PROJECT

	Summary of Fine Cond		tnagar Si regates		FOI	RTHE	MONT	H OF D	ECE	MBER 2016
		LAB			Grain Si	za Distri	bution			REMARKS
.N.	DESCRIPTION / LOCATION	REF. NO:	10	4:75	2.36	1.18	0.6	0.3	0.15	
1	From R37 Line	291	100.00	93.29	78.45	59.72	44.88	20.85	6.36	source
2	From R37 Line	292	100.00	92.57	77.70	58.45	42.57	20.27	7.09	om shree
3	From R-21 Line	293	100.00	92.48	79.74	60.13	43.46	23.53	9.15	Crusher Plant
4	From R-21 Line	294	100.00	94.46	81.54	61.23	43.69	21.85	8.00	Chisang Moran
5	From R-21 Line	295	100.00	94.86	80.39	60.77	44.69	20.26	6.75	
6	From R-21 Line	296	100.00	95.70	79.14	61.59	45.36	21.85	5.96	
7	From R-21 Line	297	100.00	95.11	76.87	59.28	44.30	21.82	6.51	
8	From R- 5 Line	298	100.00	95.09	76.38	58.28	41.10	18.40	5.52	
9	From R- 5 Line	299	100.00	94.89	76.45	58.71	42.90	20.32	6.77	
10	From R- 5 Line	300	100.00	95.59	75.93	58.31	42.03	18.98	6.44	
11	From R- 5 Line	301	100.00	94.19	77.42	57.10	40.97	21.29	7.74	
12	From R- 5 Line	302	100.00	95.52	78.62	58.62	40.69	20.34	7.24	
13	From R- 3 Line	303	100.00	95.74	78.01	57.45	40.78	19.15	7.09	2
14	From R- 3 Line	304	100.00	94.39	77.54	58.95	42.81	18.25	5.61	
15	From R- 3 Line	305	100.00	95.27	77.45	58.55	42.55	17.82	5.45	
16	From R- 3 Line	306	100.00	96.14	77.19	57.89	44.56	18.95	6.32	
17	From R- 3 Line	307	100.00	95.76	76.33	56.54	42.76	18.02	6.01	
18	From S-9 Line	308	100.00	93.80	76.82	57.66	41.61	16.79	5.47	
19	-do-	309	100.00	93.80	75.58	58.53	40.70	15.50	4.26	
20	From S-9 Line	310	100.00	94.07	78.39	61.44	45.76	19.07	5.93	
	ifacation Limit is 383-1970 Zone	-2	100-100	90-100	75-100	55-90	35-59	8-30	0-10	/ 包括普

Approved by C.S.E Test Checked by A.C.S.E Consultant Reps

Submitted by Project Manager Test Conducted by Q.C Manager Contractor Reps

	Summary of Fine Cond	rete Agg	regates	Sand	FO	R THE	МОМТ	H OF I	DECE	MBER 2016
.N.	DESCRIPTION / LOCATION	LAB				iza Distr				REMARKS
		REF. NO:	10	4.75	2.36	1.18	0.6	0.3	0.15	Constant of the Constant of th
41	From Contractor Yard	331	100.00	91.12	81.38	63.04	46.42	20.34	7.45	source
42	From Contractor Yard	332	100.00	91.33	82.95	64.16	47.11	20.52	7.23	om shree
43	From Contractor Yard	333	100.00	91.09	81.90	62.93	46.26	19.54	6.03	Crusher Plant
44	From Contractor Yard	334	100.00	94.34	80.75	59.25	46.04	19.62	6.42	Chisang Morang
					198					
		Val.					2			
						-, -				
	* 1									
,										
					1					
Speci	facation Limit is 383-1970 Zone -	2	100-100	90-100	75-100	55-90	35-59	8-30	0-10	
ME	C-BRISBANE-AQUA-CEMAT-B oved by C.S.E Checked by A.C.S.E			,	Submit		oject Ma by Q.C I		6	

where were the same t

SECONDARY TOWNS INTEGRATED URABAN ENVIRONMENTAL IMPROVEMENT PROJECT Biratnagar Sub-Metropolitant C.ly FOR THE MONTH OF DECEMBER 2016 Summary of Fine Concrete Aggregates Sand

	Summary of Fine Cond			0	Grain Si	za Distri	bution			REMARKS
.N.	DESCRIPTION / LOCATION	LAB REF. NO:	10	4.75	2.36	1.18	0.6	0.3	0.15	
21	From R37 Line	311	100.00	93.00	78.19	60.91	46.91	19.75	7.41	source
22	From S-9 Line	312	100.00	92.98	78.51	61.57	48.76	19.83	7.85	om shree
23	From R-7 Line	313	100.00	92.74	78.23	61.29	47.98	20.56	8.06	Crusher Plant
24	From R-7 Line	314	100.00	94.80	79.60	62.40	48.40	20.00	8.00	Chisang Moran
25	From R-7 Line	315	100.00	95.10	80.00	62.86	48.98	19.59	6.94	
26	From R-7 Line	316	100.00	94.74	79.35	61.54	47.37	18.62	6.48	
27	From R-7 Line	317	100.00	95.18	79.52	61.45	46.99	18.88	7.23	4.
28	From R-7 Line	318	100.00	95.49	79.10	61.07	47.13	18.85	6.56	
29	WWTP Boundry wall	319	100.00	95.98	80.32	60.24	47.39	19.28	6.83	
30	WWTP Boundry wall	320	100.00	95.58	79.52	59.84	47.39	19.68	7.63	
31	WWTP Boundry wall	321	100.00	94.72	78.05	58.04	46.75	19.51	6.10	
32	WWTP Boundry wall	322	100.00	94.51	77.25	58.43	46.27	19.61	6.27	
33	WWTP Boundry wall	323	100.00	94.07	76.28	57.71	44.66	18.56	5.53	
34	WWTP SLUM WELL	324	100.00	93.12	76.52	58.70	44.94	19.03	6.07	
35	WWTP SLUM WELL	325	100.00	94.65	76.54	57.61	44.86	19.75	7.00	
36	WWTP SLUM WELL	326	100.00	92.72	78.16	62.14	48.06	20.39	6.31	
37	WWTP SLUM WELL	327	100.00	93.40	78.68	62.94	50.25	20.30	7.11	
38	WWTP SLUM WELL	328	100.00	93.20	78.64	62.62	49.51	23.30	8.25	
39	From Contractor Yard	329	100.00	93.43	76.77	61.62	48.89	22.22	7.07	
	From Contractor Yard	330	100.00	93.91	77.66	64.97	51.27	24.87	7.61	
40	ifacation Limit is 383-1970 Zone		100-100		75-100	55-90	35-59	8-30	0-10	1/82 1
Spec	inacation Limit is 303-1370 Zone		2018 /118	11	CTCF-	CALIKA .	J/V			1 Note to

SMEC-BRISBANE-AQUA-CEMAT-BDA

Approved by C.S.E

Test Checked by A.C.S.E Consultant Reps

CTCE-KALIKA J/V

Submitted by Project Manager Test Conducted by Q.C Manager **Contractor Reps**

SUMMARY OF CUBE COMPRESSIVE STRENGTH TEST M20/20 SLAB CASTING WORK MIX

FOR THE MONTH OF DECEMBER 2016

S.N.	Lab Ref No.	Date of Casting	Deatails of Mix	Location	Ra	tio by VOL	UME		M	aterials	Cube Cru	shing ,N/mm2	Remarks
				Structure	Water	Cement	Sand	Aggregate	Cement Brand	Aggregate/Sand	7 days	28-Days	
1	MR 151	21/11/2016	M20 Work mix	SLAB YARD	0.50	1	2	3.5	SHIVAM	Om shree C/plant	16.7	22.2	
2	MR152	21/11/2016	M20 Work mix	SLAB YARD	0.50	1	2	3.5	SHIVAM	Om shree C/plant	16.4	22.4	
3	MR 153	23/11/2016	M20 Work mix	SLAB YARD	0.50	1	2	3.5	SHIVAM	Om shree C/plant	16.1	22.4	
4	MR 154	24/11/2016	M20 Work mix	SLAB YARD	0.50	1	2	3.5	SHIVAM	Om shree C/plant	16.6	21.5	
5	MR 155	26/11/2016	M20 Work mix	SLAB YARD	0.50	1	2	3.5	SHIVAM	Om shree C/plant	16.4	22.2	
6	MR 156	30/11/2016	M20 Work mix	SLAB YARD	0.50	1	2	3.5	SHIVAM	Om shree C/plant	15.7	22.1	
7	MR 157	1/12/2016	M20 Work mix	SLAB YARD	0.50	1	2	3.5	SHIVAM	Om shree C/plant	16.0	22.4	
3	MR 158	1/12/2016	M20 Work mix	SLAB YARD	0.50	1	2	3.5	SHIVAM	Om shree C/plant	16.1	22.6	
9	MR 159	1/12/2016	M20 Work mix	SLAB YARD	0.50	1	2	3.5	SHIVAM	Om shree C/plant	16.7	21,9	
0	MR 160	2/12/2016	M20 Work mix	SLAB YARD	0.50	1	2	3.5	SHIVAM	Om shree C/plant	15.9	22.1	
1	MR 161	3/12/2016	M20 Work mix	SLAB YARD	0.50	1	2	3.5	SHIVAM	Om shree C/plant	16.0	22.1	
2	MR 162	3/12/2016	M20 Work mix	SLAB YARD	0.50	1	2	3.5	SHIVAM	Om shree C/plant	16.4	22.5	
3	MR163	4/12/2016	M20 Work mix	SLAB YARD	0.50	1	2	3.5	SHIVAM	Om shree C/plant	16.7	22.4	

Specifacation Limit Table For M20/20 on 7 days Age Min 67% of Total Compressive Strength

Min Required

13.4

SMEC-Brisbane-AQUA-BDA

Approved by Construction Supervision Engineer/CSE

Test checked by A.C.S.E

Consultants Reps

CTCE-KALIKA J/V

Submitted by Project Manager Test conducted by Q.C Manager

SECONDARY TOWNS IN EGRATED URABAN ENVIRONENTAL IMPROVEMENT PROJECT

Biratnagar Sub-Metropolitant City
MONTHLY Test Result Summary Sheet For The Month of

DECEMBER 2016

STIUEIP

SUB BASE (Process Control)

According to Part 2.Section 6A-Technical Specifacations&DOR Specifacation Section 1201(3)C Physical Requirement

P-9->1

SN	LAB Ref	Date Tested	Location/ Chainage/Station				ling sie					Lab.	Soaked CBR	Lab. MDD	Remarks
No	NO		3	63	37.5	20	10	5	2.360	1.18	0.075	(%)	(%)	(g/cc)	, comando
1	51	1/12/2016	R2 Road CH:3+480 to 3+690	100	83.86	60.75	46.92	36.39	28.09	18.91	5.40	9.50	42.00	2.26	
2	52	1/12/2016	R2 Road CH:3+480 to 3+690	100	80.72	58.27	45.27	36.00	27.55	18.23	5.82				
3	53	4/12/2016	R2 Road CH:3+690 to 3+770	100	80.17	58.62	46.94	31.02	25.37	19.54	6.63	9.25	40.00	2.22	
4	54	5/12/2016	R2 Road CH:3+400 to 3+450	100	83.97	63.91	52.27	37.20	27.49	20.04	7.72				
5	55	5/12/2016	R2 Road CH:3+450 to 3+500	100	81.58	62.27	50.86	35.21	25.91	18.49	7.68				
6	56	5/12/2016	R2 Road CH:3+450 to 3+500	100	82.84	69.16	56.94	45.30	34.15	21.93	10.15				
7	57	5/12/2016	R2 Road CH:3+550 to 3+600	100	79.90	65.71	52.44	41.72	31.45	21.19	9.42				
8	58	5/12/2016	R2 Road CH:3+600 to 3+650	100	88.13	68.65	51.89	39.83	28.79	18.21	7.86				
9	59	5/12/2016	R2 Road CH:3+650 to 3+700	100	84.13	69.37	53.37	40.78	28.70	18.56	8.86				
10	60	6/12/2016	R2 Road CH:3+700 to 3+750	100	83.83	69.23	54.63	41.99	29.96	18.19	7.76				
11	61	6/12/2016	R2 Road CH:3+750 to 3+800	100	81.75	67.30	54.14	43.40	29.58	18.28	7.57				
12	62	6/12/2016	R2 Road CH: 3+800 to 3+850	100	83.80	68.51	56.85	42.92	29.91	18.64	8.73				
13	63	6/12/2016	R2 Road CH: 3+850 to 3+900	100	85.62	69.92	56.78	43.46	29.36	18.18	7.62				
14	64	6/12/2016	R2 Road CH: 3+900 to 3+950	100	88.37	73.71	59.86	46.20	31.93	19.64	8.00				
15	65	7/12/2016	R2 Road CH: 3+950 to 4+000	100	89.60	75.75	60.88	47.41	34.86	21.75	9.78				
	Requ	ired Specifaca	tion	100	65-95	50-85	40-75	30-60	20-45	15-37	4 to 15		≥ 30		

SMEC-Brisbane-AQUA-CEMAT-BDA

Approved by C.S.E

Test Checked by A.C.S.E

Consultant Reps

Day.

CTCE-KALIKA J/V

Submit by Project Manage

Test Conducted by Commanager

Consultant Reps

SECONDARY TOWNS IN EGRATED URABAN ENVIRONENTAL IMPROVEMENT PROJECT

Biratnagar Sub-Metropolitant City
MONTHLY Test Result Summary Sheet For The Month of

DECEMBER 2016

STIUEIP

SUB BASE (Process Control)

According to Part 2.Section 6A-Technical Specifacations&DOR Specifacation Section 1201(3)C Physical Requirement

P9>2

CN	LAB						ling sie					Lab.	Soaked	Lab.	
SN No	Ref	Date Tested	Location/ Chainage/Station			(%	passing	by wei	ght)			OMC	CBR	MDD	Remarks
.,.	NO			63	37.5	20	10	5	2.360	1.18	0.075	(%)	(%)	(g/cc)	
16	66	8/12/2016	R2 Road CH: 4+000 to 4+050	100	92.06	77.86	61.86	47.02	33.03	19.85	8.09				
17	67	8/12/2016	R2 Road CH: 4+050 to 4+100	100	97.98	72.74	56.72	44.27	31.02	18.28	8.02				
18	68	8/12/2016	R2 Road CH: 4+050 to 4+100	100	91.44	74.74	56.96	43.46	28.30	18.28	8.06				
19	69	8/12/2016	R2 Road CH: 4+100 to 4+120	100	90.96	74.25	57.88	45.61	31.88	19.94	9.12				
20	70	8/12/2016	R2 Road CH: 4+100 to 4+120	100	88.96	73.37	56.87	44.17	31.08	19.37	7.84				
21	71	22/12/2016	R2 Road From OM SHREE C/Plant	100	81.53	61.79	45.39	34.99	29.98	23.67	5.12				
22	72	22/12/2016	0+00 to 0+120 S-13,Acess Road	100	85.34	66.55	50.27	37.54	28.96	22.41	5.73				
23	73	22/12/2016	0+00 to 0+120 S-13,Acess Road	100	83.86	64.99	49.10	36.38	28.04	22.57	5.82				
24	74	22/12/2016	0+00 to 0+120 S-13,Acess Road	100	87.00	67.48	51.03	37.94	29.18	23.33	6.11				
25	75	28/12/2016	1+00 to 1+120 R2 Puspal chowck	100	85.29	64.87	48.00	34.60	27.19	21.25	5.19				Round Abot
26	76	28/12/2016	1+00 to 1+120 R2 Puspal chowck	100	87.22	66.16	48.34	33.53	26.07	20.39	6.05				
27	77	28/12/2016	1+00 to 1+120 R2 Puspal chowck	100	86.06	66.78	50.26	35.12	26.73	20.26	7.86				
28	78	28/12/2016	R1-22 AMAR MARG	100	81.07	58.14	44.87	35.61	27.61	20.57	6.60				
29	79	28/12/2016	R1-22 AMAR MARG	100	81.87	65.22	47.29	37.09	27.55	19.39	6.10				
30	80	28/12/2016	R-19 Line	100	80.62	60.88	46.63	35.86	27.46	21.42	6.46				
	Requ	ired Specifac	ation	100	65-95	50-85	40-75	30-60	20-45	15-37	4 to 15		≥ 30		

SMEC-Brisbane-AQUA-CEMAT-BDA

Approved by C.S.E

Test Checked by A.C.S.E

Consultant Reps

Book.

CTCE-KALIKA J/V/

Submit by Project Marrager

Test Conducted by Com Manager

Consultant Reps

SECONDARY TOWNS IN . EGRATED URABAN ENVIRONENTAL IMPROVEMENT PROJECT

Biratnagar Sub-Metropolitant City
MONTHLY Test Result Summary Sheet For The Month of

DECEMBER 2016

STIUEIP

SUB BASE (Process Control)

According to Part 2.Section 6A-Technical Specifacations&DOR Specifacation Section 1201(3)C Physical Requirement

SN No	LAB Ref	Date Tested	Location/ Chainage/Station				ling sie					Lab.	Soaked CBR	Lab.	Remarks
NO	NO			63	37.5	20	10	5	2.360	1.18	0.075	(%)	(%)	(g/cc)	
31	81	28/12/2016	R-19 Line	100	82.84	64.66	50.57	38.31	26.80	18.47	7.54				
32	82	28/12/2016	R-14 Line	100	84.04	61.41	47.10	36.39	30.47	22.90	6.79				
33	83	28/12/2016	R-14 Line	100	84.76	60.58	45.69	34.09	27.57	20.82	6.40				
34	84	28/12/2016	CH:5+490	100	80.12	59.23	45.11	35.22	26.94	21.03	6.59				Dharamban ROAD
35	85	28/12/2016	CH:5+560	100	80.00	60.41	46.27	36.61	27.88	21.06	6.41				
36	86	28/12/2016	CH: 5+630	100	80.84	59.94	47.11	37.17	28.64	21.56	7.96				
37	87	28/12/2016	CH:5+700	100	82.29	60.86	47.32	36.86	27.08	20.70	6.49				
38	88	28/12/2016	CH:5+770	100	79.23	61.79	47.06	36.80	27.60	20.51	6.44				
39	89	28/12/2016	CH: 5+850	100	81.77	64.89	51.27	37.82	27.73	18.84	6.71				
40	90	28/12/2016	CH:5+920	100	81.13	59.86	47.76	38.06	27.76	20.39	6.98				
41	91	28/12/2016	CH: 5+990	100	78.77	58.19	49.07	37.09	27.75	21.51	6.50				
42	92	29/12/2016	CH:6+040	100	81.21	60.42	52.55	39.53	28.73	20.85	7.17				
43	93	29/12/2016	CH:6+100	100	81.68	61.63	48.79	38.05	28.83	20.64	7.57				
44	94	29/12/2016	CH: 6+150	100	82.84	64.76	49.64	36.81	27.40	19.62	6.23				
45	95	29/12/2016	CH:6+180	100	80.69	61.54	47.27	36.99	28.24	20.22	5.90				
	Requ	ired Specifacat	tion	100	65-95	50-85	40-75	30-60	20-45	15-37	4 to 15		≥ 30		

SMEC-Brisbane-AQUA-CEMAT-BDA

Approved by C.S.E

Test Checked by A.C.S.E

Consultant Reps

CTCE-KALIKA J/V

Submit by Project Manager

Test Conducted by Q. Manager

Consultant Reps

SUMMARY OF CUBE COMPRESSIVE STRENGTH TEST M30/20 MAN HOLE CASTING WORK MIX FOR THE MONTH OF DECEMBER 2016

S.N.	Lab Ref	Date of	Deatails of Mix	Location	R	atio by MA	SS		Ma	aterials	Cube Cru	shing ,N/mm2	Remarks
J.14.	No.	Casting		Structure	Water	Cement	Sand	Aggregate	Cement Brand	Aggregate/Sand	7 days	28-Days	
1	MR 121	18/11/2016	M30 Work mix	MANHOLE YARD	0.36	1	1.28	2.14	SHIVAM	Om shree C/plant	22.2	31.9	V.
2	MR 122	19/11/2016	M30 Work mix	MANHOLE YARD	0.36	1	1.28	2.14	SHIVAM	Om shree C/plant	22.2	32.0	
3	MR 123	20/11/2016	M30 Work mix	MANHOLE YARD	0.36	1	1.28	2.14	SHIVAM	Om shree C/plant	22.1	32.0	
4	MR 124	21/11/2016	M30 Work mix	MANHOLE YARD	0.36	1	1.28	2.14	SHIVAM	Om shree C/plant	22.3	31.9	
5	MR 125	22/11/2016	M30 Work mix	MANHOLE YARD	0.36	1	1.28	2.14	SHIVAM	Om shree C/plant	22.8	32.4	
6	MR 126	23/11/2016	M30 Work mix	MANHOLE YARD	0.36	1	1.28	2.14	SHIVAM	Om shree C/plant	22.4	31.2	
7	MR 127	24/11/2016	M30 Work mix	MANHOLE YARD	0.36	1	1.28	2.14	SHIVAM	Om shree C/plant	23.0	31.8	
8	MR 128	26/11/2016	M30 Work mix	MANHOLE YARD	0.36	1	1.28	2.14	SHIVAM	Om shree C/plant	22.2	31.1	
9	MR 129	27/12/2016	M30 Work mix	MANHOLE YARD	0.36	1	1.28	2.14	SHIVAM	Om shree C/plant	22.3	31.6	
10	MR 130	28/12/2016	M30 Work mix	MANHOLE YARD	0.36	1	1.28	2.14	SHIVAM	Om shree C/plant	22.4	31.5	
11	MR 131	29/11/2016	M30 Work mix	MANHOLE YARD	0.36	1	1.28	2.14	SHIVAM	Om shree C/plant	22.4	31.3	
12	MR 132	30/11/2016	M30 Work mix	MANHOLE YARD	0.36	1	1.28	2.14	SHIVAM	Om shree C/plant	22.0	31.4	
13	MR 133	1/12/2016	M30 Work mix	MANHOLE YARD	0.36	1	1.28	2.14	SHIVAM	Om shree C/plant	22.1	31.0	
14	MR 134	2/12/2016	M30 Work mix	MANHOLE YARD	0.36	1	1.28	2.14	SHIVAM	Om shree C/plant	22.5	31.9	
15	MR 135	2/12/2016	M30 Work mix	MANHOLE YARD	0.36	1	1.28	2.14	SHIVAM	Om shree C/plant	22.5	31.2	
16	MR 136	3/12/2016	M30 Work mix	MANHOLE YARD	0.36	1	1.28	2.14	SHIVAM	Om shree C/plant	22.4	31.3	
17	MR 137	3/12/2016	M30 Work mix	MANHOLE YARD	0.36	1	1.28	2.14	SHIVAM	Om shree C/plant	23.0	31.6	

Specifacation Limit Table For M30/20 on 7 days Age Min 67% of Total Compressive Strength

Min Required

20.1

30

SMEC-Brisbane-AQUA-BDA

Approved by Construction Supervision Engineer/CSE

Test checked by A.C.S.E.

Consultants Reps

CTCE-KALIKA J/V

Submitted by Project Manager

Test conducted by Q.C Manager

SECONDARY TOWNS INTEGRATED URABAN ENVIRONMENTAL IMPROVEMENT PROJECT

Biratnagar Sub-Metropolitant City

CEMENT TEST SUMMERY

For the Month of DECEMBER 2016

P.G-1

S.N.	Lab. Ref.	Description of cement	Testing	Consister	ncy & Setti	ng Time	Remarks
	NO.		Date	Norm. Const.	Intial(min.)	Final(min.)	
1	MR 166	KOSHI OPC	1/12/2016	38.0	210	315	All Cement
2	MR 167	KOSHI OPC	2/12/2016	38.1	205	310	Are
3	MR 168	KOSHI OPC	3/12/2016	37.7	200	320	Nepali
4	MR 169	KOSHI OPC	4/12/2016	37.3	205	320	BRAND
5	MR 170	KOSHI OPC	5/12/2016	38.4	220	325	
6	MR 171	KOSHI OPC	6/12/2016	37.7	225	310	
7	MR 172	KOSHI OPC	7/12/2016	37.7	210	340	
8	MR 173	KOSHI OPC	8/12/2016	38.0	235	350	
9	MR 174	SHIVAM OPC	9/12/2016	37.6	145	250	
10	MR 175	SHIVAM OPC	10/12/2016	36.9	160	270	OPC
11	MR 176	SHIVAM OPC	11/12/2016	36.0	155	280	
12	MR 177	SHIVAM OPC	12/12/2016	36.9	170	275	
13	MR 178	SHIVAM OPC	13/12/2016	37.4	210	275	
14	MR 179	SHIVAM OPC	14/12/2016	37.4	175	280	
15	MR 180	SHIVAM OPC	15/12/2016	37.0	215	310	
Requi	irements in ac	ccordance with BS 12/4027			> 45 Min.	10 Hrs	

SMCE-Brisbane-AQUA-BDA

Approved by C.S.E

Test Checked by A.C.S.E

Consultant Reps

CTCE-KALIKA J/V

Submitted by Project Manager

Test Conducted by Q.C Manager

SECONDARY TOWNS INTEGRATED URABAN ENVIRONMENTAL IMPROVEMENT PROJECT

Biratnagar Sub-Metropolitant City

CEMENT TEST SUMMERY

For the Month of DECEMBER 2016

P.G-2

S.N.	Lab. Ref.	Description of cement	Testing	Consiste	ncy & Setti	ng Time	Remarks
	NO.		Date	Norm. Const.	Intial(min.)	Final(min.)	
16	MR 181	SHIVAM OPC	16/12/2016	37.1	240	360	All Cement
17	MR 182	SHIVAM OPC	17/12/2016	37.0	185	290	Are
18	MR 183	SHIVAM OPC	18/12/2016	36.6	185	280	
19	MR 184	SHIVAM OPC	19/12/2016	36.6	185	280	Nepali BRAND
20	MR 185	SHIVAM OPC	20/12/2016	36.9	250	300	BRAND
21	MR 186	SHIVAM OPC	21/12/2016	36.3	185	320	
22	MR 187	SHIVAM OPC	22/12/2016	36.6	250	305	
23	MR 188	SHIVAM OPC	23/12/2016	36.4	188	310	
24	MR 189	SHIVAM OPC	24/12/2016	36.7	185	330	
25	MR 190	SHIVAM OPC	25/12/2016	36.7	180	320	OPC
26	MR 191	SHIVAM OPC	26/12/2016	37.1	175	355	OPC
27	MR 192	SHIVAM OPC	27/12/2016	37.0	195	295	
28	MR 193	SHIVAM OPC	28/12/2016	36.9	195	325	
29	MR 194	SHIVAM OPC	29/12/2016	36.7	185	300	
30	MR 195	SHIVAM OPC	30/12/2016	37.1	195	310	
					> 45 Min.	10 Hrs	

SMCE-Brisbane-AQUA-BDA

Approved by C.S.E

Test Checked by A.C.S.E

Consultant Reps

CTCE-KALIKA J/V

Submitted by Project Manager

Test Conducted by Q.C Manager

Secondary Towns Integrated Uraban Environmental Improvement Project

Biratnagar Sub-Metropolitant City

TEST RESULT SUMMA	ARY SHEET	For the Month	of DECEMBER 2016
	LALLA CAME		

N No	Ref. STIUEIP LAB/	Date of Testing	Location	Chanage	BRAND NAME 1 st class brick	Compressive Strength N/mm2	SCALE OF Sample From
1	MR 441	1/12/2016	R-21	R-21	ANAND	10.3	
2	MR 442	1/12/2016	R-21	R-21	ANAND	10.5	
3	MR 443	1/12/2016	R-21	R-21	ANAND	10.6	
4	MR 444	2/12/2016	R-3	R-3	ANAND	10.9	4
5	MR 445	2/12/2016	R-3	R-3	ANAND	11.0	
6	MR 446	2/12/2016	R-3	R-3	ANAND	10.8	
7	MR 447	3/12/2016	R-24	R-24	ANAND	10.4	
8	MR 448	3/12/2016	R-24	R-24	ANAND	10.4	
9	MR 449	3/12/2016	R-24	R-24	ANAND	10.8	
10	MR 450	4/12/2016	R-28	R-28	ANAND	11.1	
11	MR 451	4/12/2016	R-28	R-28	ANAND	11.2	
12	MR 452	4/12/2016	R-28	R-28	ANAND	10.7	
13	MR 453	10/12/2016	R-37	R-37	ANAND	/11.0	
14	MR 454	10/12/2016	R-37	R-37	ANAND	10.5	
15	MR 455	10/12/2016	R-37	R-37	ANAND	/ 10.9	
16	MR 456	10/12/2016	R-37	R-37	ANAND	/10.7	
17	MR 457	10/12/2016	R-27	R-27	ANAND	/ 11.2	
18	MR 458	12/12/2016	R-27	R-27	ANAND	10.5	
19	MR 459	12/12/2016	R-27	R-27	ANAND	10.4	
20	MR 460	13/12/2016	R-7	R-7	ANAND	10.6	O THE

SMEC-Brisbane-AQUA-BDA-CEMAT Approved by Construction Supervision Engineer
Test Checked by A.C.S.E Consultantr Reps

CTCE-KALIKA J/V Submitted by Project Manager Test conducted by Q.C Manager Contractor Reps

Secondary Towns Integrated Uraban Environmental Improvement Project

Biratnagar Sub-Metropolitant City

TEST RESULT SUMMARY SHEET For the Month of DECEMBER 2016

SN No	Ref. STIUEIP LAB/	Date of Testing	Location	Chanage	BRAND NAME 1 st class brick	Compressive Strength N/mm2	SCALE OF Sample From
21	MR461	13/12/2016	R-7	R-7	AMBEY	10.6	
22	MR462	13/12/2016	R-7	R-7	AMBEY	10.7	
23	MR463	15/12/2016	R-14	R-14	ANAND	10.6	
24	MR 464	15/12/2016	R-14	R-14	ANAND	11.2	
25	MR 465	15/12/2016	R-14	R-14	ANAND	10.9	
26	MR 466	15/12/2016	R-22	R-22	ANAND	10.0	
27	MR 467	17/12/2016	R-22	R-22	ANAND	10.6	
28	MR 468	17/12/2016	R-22	R-22	ANAND	10.8	
29	MR 469	17/12/2016	WWTP	WALL	ANAND	10.8	
30	MR 470	17/12/2016	WWTP	WALL	ANAND	10.5	
31	MR 471	17/12/2016	WWTP	WALL	ANAND	10.4	
32	MR 472	20/12/2016	WWTP	WALL	ANAND	10.5	
33	MR 473	20/12/2016	WWTP	WALL	ANAND	A1.1	
34	MR 474	22/12/2016	R-3	R-3	ANAND	11.2	
35	MR 475	22/12/2016	R-7	R-7	ANAND	10.6	
36	MR 476	22/12/2016	R-37	R-37	ANAND	11.2	
37	MR 477	22/12/2016	R-7	R-7	ANAND	11.3	
38	MR 478	22/12/2016	R-27	R-27	ANAND	10.5	
39	MR 479	22/12/2016	R-27	R-27	ANAND	10.9	
40	MR 480	23/12/2016	R-3	R-3	ANAND	10.7	THE THE
	Speci	fication			IS1077,IS2180or NS1/2035	>-10N/MM2	CO CE KALLE OF

SMEC-Brisbane-AQUA-BDA-CEMAT Approved by Construction Supervision Engineer Test Checked by A.C.S.E Consultantr Reps

CTCE-KALIKA J/V Submitted by Project Manager Test conducted by Q.C Manager Contractor Reps

Secondary Towns Integrated Uraban Environmental Improvement Project

Biratnagar Sub-Metropolitant Cit

TEST RESULT SUMMARY	SHEET	For the Month	of DECEMBER 2016
---------------------	-------	---------------	------------------

SN No	Ref. STIUEIP LAB/	Date of Testing	Location	Chanage	BRAND NAME 1 st class brick	Compressive Strength N/mm2	SCALE OF Sample From
41	MR 481	23/12/2016	R-21	R-21	ANAND	11.0	
42	MR 482	23/12/2016	R-24	R-24	ANAND	10.7	
43	MR 483	23/12/2016	R-31	R-31	ANAND	10.9	
44	MR 484	23/12/2016	R-37	R-37	ANAND	11.7	
45	MR 485	23/12/2016	R-37	R-37	ANAND	10.7	
46	MR 486	24/12/2016	R-5	R-5	ANAND	11.6	
47	MR 487	24/12/2016	WWTP	WALL	ANAND	11.7	
48	MR 488	25/12/2016	WWTP	WALL	ANAND	10.6	
49	MR 489	25/12/2016	WWTP	WALL	ANAND	10.6	
50	MR 490	27/12/2016	WWTP	WALL	ANAND	10.4	
51	MR 491	27/12/2016	Highway	MANHOLE	ANAND	10.4	Bhrikuti chowck
52	MR 492	27/12/2016	Highway	MANHOLE	ANAND	10.8	
53	MR 493	27/12/2016	Highway	MANHOLE	ANAND	10.7	
54	MR 494	29/12/2016	R-5	R-5	ANAND	10.4	
55	MR 495	29/12/2016	R-5	R-5	ANAND	10.7	
56	MR 496	29/12/2016	R-3	R-3	ANAND	10.3	
57	MR497	29/12/2016	R-3	R-3	ANAND	-10.6	
58	MR 498	29/12/2016	WWTP	WALL	ANAND	10.4	
59	MR 499	29/12/2016	WWTP	WALL	ANAND	10.4	
60	MR 500	29/12/2016	WWTP	WALL	ANAND	10.7	
	Specific	cation			IS1077,IS2180or	>-10N/MM2	de CERA

Specification

NS1/2035

>~10N/MM2

SMEC-Brisbane-AQUA-BDA-CEMAT Approved by Construction Supervision Engineer
Test Checked by A.C.S.E Consultantr Reps

CTCE-KALIKA J/V Submitted by Project Manager Test conducted by Q.C Manager Contractor Reps

SUMMARY OF FIELD DENSITY TES (IS:2720:-PART-28) FOR THE MONTH OF DECEMBER 2016

Description: Field Density Tests on R2 Road From 3+420 To 4+140 LHS

CRUSHED STONE BASE LAYER

S.N.	L/Ref. No.	Date	Location/ Area	MDD Gm/CC	Degree	e of Compaction, %	Remarks
1			3+420 LHS	2.29	99.4	5.00	
2			3+450 RHS	2.28	99.3	4.50	
3			3+480 CL	2.27	98.70	5.00	
4			3+510 LHS	2.27	99.70	6.00	
5			3+540 RHS	2.28	99.30	6.00	
6			3+580 LHS	2.27	98.65	6.00	
7			3+600 LHS	2.28	99.03	6.00	
8			3+630 RHS	2.28	99.00	6.00	
9	FD 16	31/12/2016	3+660 CL	2.27	98.53	5.50	
10	LD 10	31/12/2016	3+690 LHS	2.26	99.70	6.00	
11			3+700 RHS	2.29	99.56	6.00	
12			3+730 CL	2.29	99.66	5.50	
13			3+750 RHS	2.27	98.54	6.00	
14			3+780 RHS	2.23	98.24	6.00	
14			3+800 CL	2.29	99.57	6.00	
16			3+830 RHS	2.28	99.30	6.00	
17			3+850 LHS	2.27	98.54	6.00	
18			3+880 CL	2.29	99.57	6.00	
				2.300	98	OMC <6.50	

SMEC-Brisbane-AQUA-CEMAT-BDA

Approved by C.S.E

Test Checked by A.C.S.E

Consultant Reps

CTCE-KALIKA J/V

Submitted by Project Manage

Test Conducted by Q.C.Marager

SUMMARY OF FIELD DENSITY TES (IS:2720:-PART-28) FOR THE MONTH OF DECEMBER 2016

Description: Field Density Tests on R2 Road From 3+420 To 4+140 LHS

CRUSHED STONE BASE LAYER

S.N.	L/Ref. No.	Date	Location/ Area	MDD Gm/CC	Degree	of Compaction, %	Remarks
19			4+00 LHS	2.28	99.1	6.00	
20			4+030 RHS	2.27	98.6	6.00	
21			4+060 CL	2.29	99.61	6.00	
22			4+090 RHS	2.29	99.61	6.00	
23			4+120 LHS	2.28	99.06	6.00	
24			4+140 RHS	2.29	99.61	6.00	
		-					
	FD 16	3112/2016					
		1					
						0110 015	
				2.300	98	OMC <6.50	

SMEC-Brisbane-AQUA-CEMAT-BDA

Approved by C.S.E

Test Checked by A.C.S.E

Consultant Reps

CTCE-KALIKA J/V

Submitted by Project Manager

Test Conducted by Q.C Manager

SUMMARY OF FIELD DENSITY TES (IS:2720:-PART-28) FOR THE MONTH OF DECEMBER 2016

Description: Field Density Tests on R2 Road From 3+420 To 4+140 LHS

CRUSHED STONE BASE LAYER

S.N.	L/Ref. No.	Date	Location/ Area	MDD Gm/CC	Degree	of Compaction, %	Remarks
19			4+00 LHS	2.28	99.1	6.00	
20			4+030 RHS	2.27	98.6	6.00	
21			4+060 CL	2.29	99.61	6.00	
22			4+090 RHS	2.29	99.61	6.00	
23			4+120 LHS	2.28	99.06	6.00	
24			4+140 RHS	2.29	99.61	6.00	
-	FD 16	3112/2016					
	-				/		
		-		,			
-		-					
-							
-		-					
		-					
			/				
				2.300	98	OMC <6.50	

SMEC-Brisbane-AQUA-CEMAT-BDA

Approved by C.S.E

Test Checked by A.C.S.E

Consultant Reps

CTCE-KALIKA J/V

Submitted by Project Manager

Test Conducted by Q.C. Manager

SUMMARY OF FIELD DENSITY TES (IS:2720:-PART-28) FOR THE MONTH OF DECEMBER 2016

Description: Field Density Tests on R2 ch:3+480 to 3+690RHS,CL,LHS

SUB BASE LAYER

S.N.	L/Ref. No.	Date	Location/ Area	MDD Gm/CC	Degree	of Compaction, %	Remarks
1			3+480 RHS	2.21	97.7	8.50	
2			3+500 LHS	2.21	97.7	9.00	
3			3+520 CL	2.23	98.7	8.00	
4			3+530 CL	2.23	98.70	7.50	
5			3+550 RHS	2.22	98.20	7.50	
6			3+560 LHS	2.22	98.20	8.00	
7			3+580 RHS	2.19	96.70	8.00	
8			3+580 CL	2.20	97.60	8.50	
9	ED 47	2/42/2046	3+600 RHS	2.22	98.10	7.50	
10	FD 17	2/12/2016	3+610 LHS	2.23	98.60	7.00	
11	_		3+620 CL	2.19	96.70	7.50	
12			3+640 RHS	2.17	96.00	8.00	
13			3+650 LHS	2.23	98.60	8.50	
14			3+650 CL	2.22	98.30	7.00	
15			3+650 RHS	2.21	97.90	8.00	
16			3+670 CL	2.22	98.30	8.50	
17			3+680 RHS	2.19	69.80	8.00	
18			3+690 LHS	2.23	98.60	8.50	
	Specification Requirement			2.260	>95	OMC <9.50	

SMEC-Brisbane-AQUA-CEMAT-BDA

Approved by C.S.E

Test Checked by A.C.S.E

Consultant Reps

CTCE-KALIKA J/V

Submitted by Project Manager

Test Conducted by Q.C Managet/

SUMMARY OF FIELD DENSITY TES (IS:2720:-PART-28) FOR THE MONTH OF DECEMBER 2016

Description: Field Density Tests on R2 ch:3+690 to 3+770 RHS,CL,LHS

SUB BASE LAYER

S.N.	L/Ref. No.	Date	Location/ Area	MDD Gm/CC	Degree	of Compaction, %	Remarks
1			3+700 LHS	2.23	98.5	8.50	
2			3+710 RHS	2.23	98.5	8.00	
3			3+720 CL	2.21	97.7	8.00	
4			3+730 LHS	2.23	98.50	8.50	
5			3+740 RHS	2.22	98.10	9.00	
6			3+750 CL	2.21	97.60	8.50	
7			3+750RHS	2.21	97.60	8.00	
8			3+750 LHS	2.20	97.20	8.50	
9	FD 18	4/12/2016	3+760 LHS	2.19	96.70	7.50	
10	LD 10	4/12/2016	3+760 RHS	2.18	96.60	8.00	
11	-		3+760 CL	2.19	96.70	8.50	
12			3+770 LHS	2.20	97.50	8.00	
_							
	Spe	cification Re	quirement	2.260	>95	OMC <9.50	

SMEC-Brisbane-AQUA-CEMAT-BDA

Approved by C.S.E

Test Checked by A.C.S.E

Consultant Reps

CTCE-KALIKA J/V

Submitted by Project Manager

Test Conducted by Q.C Manager

SUMMARY OF FIELD DENSITY TES (IS:2720:-PART-28) FOR THE MONTH OF DECEMBER 2016

Description: Field Density Tests on R2 ch:3+770 to 3+910 RHS,CL,LHS

SUB BASE LAYER

S.N.	L/Ref. No.	Date	Location/ Area	MDD Gm/CC	Degree	e of Compaction, %	Remarks
1			3+770 LHS	2.18	96.5	8.00	
2			3+800 RHS	2.20	97.2	8.50	
3			3+790 CL	2.23	98.7	8.00	
4			3+800 LHS	2.18	96.50	8.00	
5			3+810 RHS	2.18	96.50	8.50	
6			3+820 CL	2.19	97.10	8.00	
7			3+830 RHS	2.19	97.10	97.10	
8			3+840 LHS	2.21	97.80	97.80	
9	FD 19	4/12/2016	3+860 CL	2.21	97.80	97.80	
10	10 13	4/12/2010	3+875 RHS	2.20	97.20	97.20	
11	-		3+890 LHS	2.18	96.30	96.30	
12			3+910 CL	2.19	96.80	96.80	
				10.			
	Specification Requirement			2.260	>95	OMC <9.50	

SMEC-Brisbane-AQUA-CEMAT-BDA

Approved by C.S.E

Test Checked by A.C.S.E

Consultant Reps

CTCE-KALIKA J/V

Submitted by Project Manager

Test Conducted by Q.C Manager

SUMMARY OF FIELD DENSITY TES (IS:2720:-PART-28) FOR THE MONTH OF DECEMBER 2016

Description: Field Density Tests on R2 ch:3+910 to 4+140 RHS,CL,LHS

SUB BASE LAYER

S.N.	L/Ref. No.	Date	Location/ Area	MDD Gm/CC	Degree	e of Compaction, %	Remarks
1			3+910 LHS	2.22	98.0	8.50	
2			3+930 RHS	2.15	95.0	8.50	
3			3+950 CL	2.20	97.0	8.00	
4			3+970 LHS	2.22	98.00	8.00	
5			3+990 RHS	2.20	97.00	8.00	
6			4+000 RHS	2.18	97.00	8.50	
7			4+010 LHS	2.21	98.00	8.50	
8			4+030 RHS	2.21	98.00	9.00	
9	FD 20	5/12/2016	4+050 CL	2.21	98.00	8.00	
10	1 0 20	3/12/2010	4+070 LHS	2.18	97.00	8.50	
11	-		4+080 CL	2.20	97.00	8.50	
12			4+090 RHS	2.18	97.00	8.00	
			4+100 CL	2.20	97.00	8.00	
			4+110 LHS	2.19	97.00	8.00	
			4+120 RHS	2.21	98.00	8.00	
-			4+130 CL	2.21	98.00	8.00	
			4+140 LHS	2.21	98.00	8.00	
			4+140 RHS	2.18	96.00	8.50	
	Specification Requirement			2.260		OMC <9.50	

SMEC-Brisbane-AQUA-CEMAT-BDA

Approved by C.S.E

Test Checked by A.C.S.E

Consultant Reps

CTCE-KALIKA J/V

Submitted by Project Manager

Test Conducted by Q.C Manager

SUMMARY OF FIELD DENSITY TES (IS:2720:-PART-28) FOR THE MONTH OF DECEMBER 2016

Description: Field Density Tests on R2 ch:3+400 to 3+910 RHS,CL,LHS

SUB BASE LAYER

S.N.	L/Ref. No.	Date	Location/ Area	MDD Gm/CC	Degree	of Compaction, %	Remarks
1			3+470 CL	2.20	97.0	8.50	
2			3+415 RHS	2.20	97.0	8.00	
3			3+435 CL	2.18	96.0	8.00	
4			3+450 LHS	2.21	98.00	8.50	
5			3+460 RHS	2.22	98.00	8.50	
6			3+470 CL	2.18	97.00	8.50	
	FD 21	6/12/2016					
	-						
		_					
		1					
		_					
_		-					
		-					*
		-					-
				2.260		OMC <9.50	

SMEC-Brisbane-AQUA-CEMAT-BDA

Approved by C.S.E

Test Checked by A.C.S.E

Consultant Reps

CTCE-KALIKA J/V

Submitted by Project Manager

Test Conducted by Q.C Manager

Biratnagar-Sub-Metropolitant City

SUMMERY OF MORTAR COMPRESSIVE STRENGTH TEST WORK MIX CUBE

	-	
- 1	G	-

PC	JK IIIL		F DECEMBER 2016		Casting	Consisto	ncy & Settin	g Time	7 day's cub	e Crushing	28 day's cub	e crushing	Remark
s.N.	LAB REF	Name of	Location/Structure	Details of MIX	-	Norm. Const.	Intial(min.)	Final(min.)	Date	Str. N/mm2	Date	Str. N/mm2	
	No.	Shivam	R-3 Line work mix	1:4 by volume	7/11/2016	37.70	170	340	14/11/2016	6.40	5/12/2016	8.16	17
1	348		WWTP Boundry Wall	1:4 by volume	8/11/2016	37.70	170	340	15/11/2016	6.30	6/12/2016	7.89	
2	349	Shivam	WWTP Boundry Wall	1:4 by volume	9/11/2016	37.70	170	340	16/11/2016	6.50	7/12/2016	7.76	
3	350	Shivam		1:4 by volume	10/11/2016	38.90	170	355	17/11/2016	6.30	8/12/2016	7.76	1
4	351	Shivam	WWTP Boundry Wall			39.10	180	300	18/11/2016	6.30	9/12/2016	7.89	
5	352	Shivam	WWTP Boundry Wall	1:4 by volume			180	300	18/11/2016	6.50	9/12/2016	7,89	
6	353	Shivam	RANI Line Work mix	1:4 by volume			180	300	18/11/2016	6.30	9/12/2016	7.76	
7	354	Shivam	R-24 Line Work mix	1:4 by volume		39.10	180	300	18/11/2016	6.40	9/12/2016	7.89	
8	355	KOSHI	R-27 Line Work mix	1:4 by volume	11/11/2016	39.10	180	300	18/11/201	6 6.40	9/12/2016	8.03	
9	356	KOSHI	R-21 Line Work mix	1:4 by volume	11/11/2016	39.10	180	300	18/11/201	6 6.70	9/12/2016	7.89	
10	357	KOSHI	R3 Line Work Mix	1:4 by volume	11/11/2016	39.10	180	300	18/11/201		9/12/2016	7.89	-
12		KOSHI	R3 Line Work Mix	1:4 by volume	12/11/2010	38.90	190	310	19/11/201	-	10/12/2016		1
13		KOSHI	R3 Line Work Mix	1:4 by volume	12/11/201	6 38.90	190	310	19/11/201		10/12/2016		-
14	1	козні	R-22 Line Work mix	1:4 by volume	12/11/201	6 38.90	190	310	19/11/20		10/12/2010		
15	362	KOSHI	R-22 Line Work mix	1:4 by volume	e 12/11/201	6 38.90	190	310 m Max 600	19/11/20		th on 28 days		7.5 N/MN

SMEC-Brisbane-AQUA-BDA-CEMAT

Approved by Construction Supervision Engineer/CSE

Test Checked by A.C.S.E

Consultants Reps

Biratnagar-Sub-Metropolitant City

SUMMERY OF MORTAR COMPRESSIVE STRENGTH TEST WORK MIX CUBE

- '	11112		F DECEMBER 2016		Casting	Consiste	ency & Settin	g Time	7 day's cub	e Crushing	28 day's cub	e crushing	Remarks
s.N.	LAB REF	Name of CEMENT	Location/Structure	Details of MIX		Norm. Const.	Intial(min.)	Final(min.)	Date	Str. N/mm2	Date	Str. N/mm2	
40	No.	KOSHI	RANI Line Work mix	1:4 by volume	12/11/2016	38.90	190	310	19/11/2016	6.10	10/12/2016	7.89	
16	363		RANI Line Work mix	1:4 by volume	12/11/2016	38.90	190	310	19/11/2016	6.40	10/12/2016	8.30	
17	364	KOSHI	R-22 Line Work mix	1:4 by volume	12/11/2016	38.90	190	310	19/11/2016	6.30	10/12/2016	7.76	
18	365	KOSHI	R-7 Line Work Mix	1:4 by volume	12/11/2016	38.90	190	310	19/11/2016	6.40	10/12/2016	7.89	
19	366	KOSHI	R-21 Line Work mix	1:4 by volume	300 00000	38.90	190	310	19/11/2016	6.50	10/12/2016	8.03	
20	367	KOSHI	R3 Line Work Mix	1:4 by volume		38.90	190	310	19/11/2016	6.40	10/12/2016	8.16	
21	368	KOSHI	R3 Line Work Mix	1:4 by volume	12/11/2016	38.90	190	310	19/11/2016	6.40	10/12/2016	8.03	-
22	369	KOSHI	R-22 Line Work mix	1:4 by volume	12/11/2016	38.90	190	310	19/11/2016	6.50	10/12/2016	8.16	
23	370	KOSHI	R-22 Line Work mix	1:4 by volume	12/11/2016	38.90	190	310	19/11/2010	6 6.30	10/12/2016		
24	372	козні	R-22 Line Work mix	1:4 by volume	12/11/2016	38.90	190	310	19/11/201	6 6.10	10/12/2016		
26	372	KOSHI	R-22 Line Work mix	1:4 by volume	12/11/2016	38.90	190	310	19/11/201	6 6.40	10/12/2016		
27	374	козні	R-22 Line Work mix	1:4 by volume	12/11/2016	6 38.90	190	310	19/11/201	6 6.70	10/12/2016	-	
28	375	козні	R-21 Line Work mix	1:4 by volume	e 12/11/201	6 38.90	190	310	19/11/201		10/12/2016	-	
29		козні	R-21 Line Work mix	1:4 by volum	e 12/11/201	6 38.90	190	310	19/11/20		10/12/2010	-	
30	-	KOSHI	R-21 Line Work mix	1:4 by volum	e 12/11/201	6 38.90	190	310	19/11/20	/	10/12/201 h on 28 days		

SMEC-Brisbane-AQUA-BDA-CEMAT

Approved by Construction Supervision Engineer/CSE

Test Checked by A.C.S.E

Consultants Reps

Biratnagar-Sub-Metropolitant City

SUMMERY OF MORTAR COMPRESSIVE STRENGTH TEST WORK MIX CUBE

C N	LAB REF	Name of	Location/Structure	Details of MIX	Casting	Consiste	ency & Settin	g Time	7 day's cut	e Crushing	28 day's cul	be crushing	Remark
S.N.	No.	CEMENT	Location/Structure			Norm. Const.	Intial(min.)	Final(min.)	Date	Str. N/mm2	Date	Str. N/mm2	
31	378	козні	R-21 Line Work mix	1:4 by volume	12/11/2016	38.90	190	310	19/12/2016	6.40	10/12/2016	7.89	
32	379	козні	R-21 Line Work mix	1:4 by volume	12/11/2016	38.90	190	310	19/12/2016	6.40	10/12/2016	7.89	
33	380	козні	RANI Line Work mix	1:4 by volume	12/11/2016	38.90	190	310	19/12/2016	6.50	10/12/2016	7.76	
34	381	козні	RANI Line Work mix	1:4 by volume	12/11/2016	38.90	190	310	19/12/2016	6.50	10/12/2016	7.89	
35	382	козні	RANI Line Work mix	1:4 by volume	12/11/2016	38.90	190	310	19/12/2016	6.40	10/12/2016	7.76	
36	383	козні	RANI Line Work mix	1:4 by volume	12/11/2016	38.90	190	310	19/12/2016	6.40	10/12/2016	7.89	
37	· 384	козні	RANI Line Work mix	1:4 by volume	12/11/2016	38.90	190	310	19/12/2016	6.50	10/12/2016	8.30	
38	385	козні	RANI Line Work mix	1:4 by volume	12/11/2016	38.90	190	310	19/12/2016	6.30	10/12/2016	8.16	
39	386	коѕні	RANI Line Work mix	1:4 by volume	12/11/2016	38.90	190	310	19/12/2016	6.30	10/12/2016	7.89	
40	387	KOSHI	R3 Line Work Mix	1:4 by volume	13/11/2016	39.10	180	320	20/11/2016	6.30	11/12/2016	8.16	
41	388	козні	R3 Line Work Mix	1:4 by volume	13/11/2016	39.10	180	320	20/11/2016	6.50	11/12/2016	8.16	
42	389	козні	R3 Line Work Mix	1:4 by volume	13/11/2016	39.10	180	320	20/11/2016	6.40	11/12/2016	-8.16	
43	390	козні	R3 Line Work Mix	1:4 by volume	13/11/2016	39.10	180	320	20/11/2016	6.40	11/12/2016	8.03	
44	391	козні	R3 Line Work Mix	1:4 by volume	13/11/2016	39.10	180	320	20/11/2016	6.10	11/12/2016	8.03	
45	392	козні	R3 Line Work Mix	1:4 by volume	13/11/2016	39.10	180	320	20/11/2016	6.10	11/12/2016	8.16	
							MIN 45m	Max 600m	Requir	red strength	on 28 days no	t less than 7.5	N/MM2

SMEC-Brisbane-AQUA-BDA-CEMAT

Approved by Construction Supervision Engineer/CSE

Test Checked by A.C.S.E

Consultants Reps

CTCE-KALIKA J/V
Submitted by Project Manager
Test conducted by Q.C Manager
Contractore Reps

STELLE.

Biratnagar-Sub-Metropolitant City

SUMMERY OF MORTAR COMPRESSIVE STRENGTH TEST WORK MIX CUBE

		Name of		Details of MIX	Casting	Consiste	ency & Settin	g Time	7 day's cub	e Crushing	28 day's cub	e crushing	Remarks
s.N.	LAB REF	CEMENT	Location/Structure	Details of MIX	ououng	Norm. Const.	Intial(min.)	Final(min.)	Date	Str. N/mm2	Date	Str. N/mm2	
46	No.	козні	R-21 Line Work mix	1:4 by volume	13/11/2016	39.10	180	320	20/11/2016	6.80	11/12/2016	7.89	
47	394	козні	R-21 Line Work mix	1:4 by volume	13/11/2016	39.10	180	320	20/11/2016	6.30	11/12/2016	8.03	
48	395	KOSHI	R-21 Line Work mix	1:4 by volume	13/11/2016	39.10	180	320	20/11/2016	6.50	11/12/2016	8.03	
49	396	козні	R-21 Line Work mix	1:4 by volume	13/11/2016	39.10	180	320	20/11/2016	6.30	11/12/2016	8.16	
50	397	козні	R-21 Line Work mix	1:4 by volume	13/11/2016	39.10	180	320	20/11/2016	6.30	11/12/2016	8.44	
	398	KOSHI	R-21 Line Work mix	1:4 by volume	13/11/2016	39.10	180	320	20/11/2016	6.70	11/12/2016	8.16	
51	399	козні	R-24 Line Work Mix	1:4 by volume	13/11/2016	39.10	180	320	20/11/2016	6.70	11/12/2016	8.16	-
53	400	козні	R-24 Line Work Mix	1:4 by volume	13/11/2016	39.10	180	320	20/11/2016	6.50	11/12/2016	8.16	
54	401	козні	R-24 Line Work Mix	1:4 by volume	13/11/2016	39.10	180	320	20/11/2016	6.50	11/12/2016	8.30	
55	402	козні	R-24 Line Work Mix	1:4 by volume	13/11/2016	39.10	180	320	20/11/2016		11/12/2016	8.03	
56	. 403	козні	R-24 Line Work Mix	1:4 by volume	13/11/2016	39.10	180	320	20/11/2016	6.40	11/12/2016	7.89	
57	404	козні	R-24 Line Work Mix	1:4 by volume	13/11/2016	39.10	180	320	20/11/2010	1	11/12/2016	-	
58	405	козні	R-21 Line Work Mix	1:4 by volume	13/11/2016	39.10	180	320	20/11/201		11/12/2016		
59	406	козні	R-21 Line Work Mix	1:4 by volume	e 13/11/201	6 39.10	180	320	20/11/201		11/12/2016	-	-
60	407	KOSHI	R-21 Line Work Mix	1:4 by volum	e 13/11/201	6 39.10	180	320	20/11/201	-	11/12/2016 n on 28 days n	-	5 NUMBER

SMEC-Brisbane-AQUA-BDA-CEMAT
Approved by Construction Supervision Engineer/CSE
Test Checked by A.C.S.E
Consultants Reps

CTCE-KALIKA J/V
Submitted by Project Manager
Test conducted by Q.C Manager
Contractore Reps

10-1

Biratnagar-Sub-Metropolitant City

SUMMERY OF MORTAR COMPRESSIVE STRENGTH TEST WORK MIX CUBE

FOR THE MONTH OF DECEMBER 2016 P.G-5 Consistency & Setting Time Name of 7 day's cube Crushing LAB REF Details of MIX Casting 28 day's cube crushing Remarks S.N. Location/Structure CEMENT Norm. Const. Intial(min.) Final(min.) Str. N/mm2 Str. N/mm2 Date Date No. KOSHI 13/11/2016 39.10 180 320 20/11/2016 11/12/2016 408 R-21 Line Work Mix 1:4 by volume 6.40 7.76 61 62 409 KOSHI R-21 Line Work Mix 1:4 by volume 13/11/2016 39.10 180 320 20/11/2016 6.50 11/12/2016 8.03 1:4 by volume | 13/11/2016 63 410 KOSHI R-21 Line Work Mix 39.10 180 320 20/11/2016 6.50 11/12/2016 8.16 KOSHI 13/11/2016 39.10 180 320 20/11/2016 64 411 RANI Line Work mix 1:4 by volume 6.90 11/12/2016 8.16 412 KOSHI RANI Line Work mix 13/11/2016 39.10 180 320 20/11/2016 6.70 11/12/2016 8.30 65 1:4 by volume 66 413 KOSHI RANI Line Work mix 1:4 by volume 13/11/2016 39.10 180 320 20/11/2016 6.10 11/12/2016 7.76 39.10 67 414 KOSHI 1:4 by volume 13/11/2016 180 320 20/11/2016 6.50 11/12/2016 7.89 RANI Line Work mix 68 415 KOSHI RANI Line Work mix 1:4 by volume 13/11/2016 39.10 180 320 20/11/2016 6.80 11/12/2016 7.89 13/11/2016 6.50 416 KOSHI RANI Line Work mix 1:4 by volume 39.10 180 320 20/11/2016 11/12/2016 7.89 69 70 417 KOSHI R-27 Line Work Mix 1:4 by volume 13/11/2016 39.10 180 320 20/11/2016 6.80 11/12/2016 8.30 320 71 418 KOSHI 1:4 by volume 13/11/2016 39.10 180 20/11/2016 6.70 11/12/2016 8.44 R-27 Line Work Mix 72 419 KOSHI R-27 Line Work Mix 1:4 by volume 13/11/2016 39.10 180 320 20/11/2016 6.70 11/12/2016 8.20 73 420 KOSHI R-27 Line Work Mix 1:4 by volume 13/11/2016 39.10 180 320 20/11/2016 6.10 11/12/2016 7.80 KOSHI 1:4 by volume 13/11/2016 39.10 180 320 20/11/2016 6.90 11/12/2016 8.00 74 421 R-27 Line Work Mix 75 422 KOSHI R-27 Line Work Mix 1:4 by volume | 13/11/2016 39.10 180 320 20/11/2016 6.90 11/12/2016 8.20

SMEC-Brisbane-AQUA-BDA-CEMAT

Approved by Construction Supervision Engineer/CSE

Test Checked by A.C.S.E Consultants Reps

CTCE-KALIKA J/V
Submitted by Project Manager
Test conducted by Q.C Manager
Contractore Reps

MIN 45m

Max 600m

Biratnagar-Sub-Metropolitant City

SUMMERY OF MORTAR COMPRESSIVE STRENGTH TEST WORK MIX CUBE

		Name of	F DECEMBER 2016	D. J. II CANY	Casting	Consiste	ncy & Settin	g Time	7 day's cub	e Crushing	28 day's cub	e crushing	Remarks
S.N.	LAB REF	CEMENT	Location/Structure	Details of MIX		Norm. Const.	Intial(min.)	Final(min.)	Date	Str. N/mm2	Date	Str. N/mm2	
76	423	козні	R-3 Line Work Mix	1:4 by volume	14/11/2016	38.60	190	325	21/11/2016	6.70	12/12/2016	8.60	
77	424	козні	R-3 Line Work Mix	1:4 by volume	14/11/2016	38.60	190	325	21/11/2016	6.90	12/12/2016	8.20	
78	425	козні	R-3 Line Work Mix	1:4 by volume	14/11/2016	38.60	190	325	21/11/2016	6.30	12/12/2016	7.90	
79	426	козні	R-3 Line Work Mix	1:4 by volume	14/11/2016	38.60	190	325	21/11/2016	6.30	12/12/2016	8.00	
80	427	козні	R-3 Line Work Mix	1:4 by volume	14/11/2016	38.60	190	325	21/11/2016	6.70	12/12/2016	8.00	
81	428	козні	R-3 Line Work Mix	1:4 by volume	14/11/2016	38.60	190	325	21/11/2016	6.80	12/12/2016	8.20	
82	429	козні	R-3 Line Work Mix	1:4 by volume	14/11/2016	38.60	190	325	21/11/2016	6.30	12/12/2016	8.30	
83	430	козні	R-22 Line Work Mix	1:4 by volume	14/11/2016	38.60	190	325	21/11/2016	6.50	12/12/2016	8.30	
84	431	KOSHI	R-22 Line Work Mix	1:4 by volume	14/11/2016	38.60	190	325	21/11/2016	6.70	12/12/2016	8.20	
85	432	козні	R-22 Line Work Mix	1:4 by volume	14/11/2016	38.60	190	325	21/11/2016	6.40	12/12/2016	8.00	
86	, 433	козні	R-22 Line Work Mix	1:4 by volume	14/11/2016	38.60	190	325	21/11/2016	6.90	12/12/2016	7.80	
87	434	козні	R-22 Line Work Mix	1:4 by volume	14/11/2016	38.60	190	325	21/11/2016	6.90	12/12/2016	8.60	
88	435	козні	R-24 Line Work Mix	1:4 by volume	14/11/2016	38.60	190	325	21/11/201	6 6.30	12/12/2016	7.90	
89	436	козні	R-24 Line Work Mix	1:4 by volume	14/11/2016	38.60	190	325	21/11/201	6 6.30	12/12/2016	8.30	
90	437	козні	R-24 Line Work Mix	1:4 by volume	14/11/2016	38.60	190	325	21/11/201		12/12/2016 n on 28 days n	-	

Approved by Construction Supervision Engineer/CSE
Test Checked by A.C.S.E

Consultants Reps

Biratnagar-Sub-Metropolitant City

SUMMERY OF MORTAR COMPRESSIVE STRENGTH TEST WORK MIX CUBE

	LAB REF	Name of	1 10 104	Details of MIX	Casting	Consiste	ency & Settin	g Time	7 day's cub	e Crushing	28 day's cu	be crushing	Remarks
S.N.	No.	CEMENT	Location/Structure			Norm. Const.	Intial(min.)	Final(min.)	Date	Str. N/mm2	Date	Str. N/mm2	
91	438	козні	R-24 Line Work Mix	1:4 by volume	14/11/2016	38.60	190	325	21/11/2016	6.70	12/12/2016	7.80	
92	439	коѕні	R-24 Line Work Mix	1:4 by volume	14/11/2016	38.60	190	325	21/11/2016	6.80	-12/12/2016	8.20	
93	440	коѕні	R-24 Line Work Mix	1:4 by volume	14/11/2016	38.60	190	325	21/11/2016	6.30	_12/12/2016	8.00	
94	441	козні	RANI Line Work mix	1:4 by volume	14/11/2016	38.60	190	325	21/11/2016	6.70	12/12/2016	8.30	
95	442	козні	RANI Line Work mix	1:4 by volume	14/11/2016	38.60	190	325	21/11/2016	6.70	12/12/2016	8.30	
96	443	козні	RANI Line Work mix	1:4 by volume	14/11/2016	38.60	190	325	21/11/2016	6.40	12/12/2016	8.30	
97	444	козні	RANI Line Work mix	1:4 by volume	14/11/2016	38.60	190	325	21/11/2016	6.40	12/12/2016	8.40	
98	445	козні	RANI Line Work mix	1:4 by volume	14/11/2016	38.60	190	325	21/11/2016	6.10	12/12/2016	7.90	
99	446	козні	RANI Line Work mix	1:4 by volume	14/11/2016	38.60	190	325	21/11/2016	6.50	12/12/2016	8.40	
100	447	козні	R-3 Line Work Mix	1:4 by volume	15/11/2016	38.90	195	320	22/11/2016	6.80	13/12/2016	8.20	
101	448	козні	R-3 Line Work Mix	1:4 by volume	15/11/2016	38.90	195	320	22/11/2016	6.70	13/12/2016	8.30	
102	449	козні	R-3 Line Work Mix	1:4 by volume	15/11/2016	38.90	195	320	22/11/2016	6.80	13/12/2016	8.30	
103	450	козні	R-3 Line Work Mix	1:4 by volume	15/11/2016	38.90	195	320	22/11/2016	6.30	13/12/2016	8.40	
104	451	козні	R-3 Line Work Mix	1:4 by volume	15/11/2016	38.90	195	320	22/11/2016	6.50	13/12/2016	8.20	
105	452	KOSHI	R-3 Line Work Mix	1:4 by volume	15/11/2016	38.90	195	320	22/11/2016	6.10	13/12/2016	8.20	

Approved by Construction Supervision Engineer/CSE
Test Checked by A.C.S.E

Consultants Reps

CTCE-KALIKA J/V
Submitted by Project Manager
Test conducted by Q.C Manager
Contractore Reps

46 20 SIE

Biratnagar-Sub-Metropolitant City

SUMMERY OF MORTAR COMPRESSIVE STRENGTH TEST WORK MIX CUBE

		Name of		Details of MIX	Casting	Consiste	ency & Settin	g Time	7 day's cub	e Crushing	28 day's cul	be crushing	Remarks
S.N.	No.	CEMENT	Location/Structure	Details of MIX	Casting	Norm. Const.	Intial(min.)	Final(min.)	Date	Str. N/mm2	Date	Str. N/mm2	
106	453	козні	R-22 Line Work Mix	1:4 by volume	15/11/2016	38.90	195	320	22/11/2016	6.50	13/12/2016	8.20	
107	454	козні	R-22 Line Work Mix	1:4 by volume	15/11/2016	38.90	195	320	22/11/2016	6.30	13/12/2016	8.30	
108	455	козні	R-22 Line Work Mix	1:4 by volume	15/11/2016	38.90	195	320	22/11/2016	6.30	13/12/2016	8.20	
109	456	козні	R-22 Line Work Mix	1:4 by volume	15/11/2016	38.90	195	320	22/11/2016	6.40	13/12/2016	8.20	
110	457	коѕні	R-22 Line Work Mix	1:4 by volume	15/11/2016	38.90	195	320	22/11/2016	6.40	13/12/2016	8.60	
111	458	KOSHI	R-22 Line Work Mix	1:4 by volume	15/11/2016	38.90	195	320	22/11/2016	6.50	13/12/2016	8.20	
112	459	козні	R-21 Line Work Mix	1:4 by volume	15/11/2016	38.90	195	320	22/11/2016	6.50	13/12/2016	7.90	
113	460	козні	R-21 Line Work Mix	1:4 by volume	15/11/2016	38.90	195	320	22/11/2016	6.40	13/12/2016	8.40	
114	461	козні	R-21 Line Work Mix	1:4 by volume	15/11/2016	38.90	195	320	22/11/2016	6.10	13/12/2016	8.60	
115	462	козні	R-21 Line Work Mix	1:4 by volume	15/11/2016	38.90	195	320	22/11/2016	6.30	13/12/2016	8.20	
116	463	козні	R-21 Line Work Mix	1:4 by volume	15/11/2016	38.90	195	320	22/11/2016	6.50	13/12/2016	7.80	
117	464	козні	R-21 Line Work Mix	1:4 by volume	15/11/2016	38.90	195	320	22/11/2016	6.30	13/12/2016	8.30	
118	465	козні	RANI Line Work Mix	1:4 by volume	15/11/2016	38.90	195	320	22/11/2010	6.70	13/12/2016	7.90	
119	466	козні	RANI Line Work Mix	1:4 by volume	15/11/2016	38.90	195	320	22/11/201	6 6.40	13/12/2016	8.30	
120	467	козні	RANI Line Work Mix	1:4 by volume	15/11/2016	38.90	195	320	22/11/201	6 6.50	13/12/2016	8.60	-

Approved by Construction Supervision Engineer/CSE

Test Checked by A.C.S.E Consultants Reps

Biratnagar-Sub-Metropolitant City

SUMMERY OF MORTAR COMPRESSIVE STRENGTH TEST WORK MIX CUBE

FOR THE MONTH OF DECEMBER 2016

	LAB REF	Name of		Details of MIX	Casting	Consiste	ncy & Settin	g Time	7 day's cub	e Crushing	28 day's cul	be crushing	Remarks
S.N.	No.	CEMENT	Location/Structure			Norm. Const.	Intial(min.)	Final(min.)	Date	Str. N/mm2	Date	Str. N/mm2	
121	468	козні	RANI Line Work Mix	1:4 by volume	15/11/2016	38.90	195	320	22/11/2016	6.70	13/12/2016	8.40	
122	469	козні	RANI Line Work Mix	1:4 by volume	15/11/2016	38.90	195	320	22/11/2016	6.10	13/12/2016	8.20	
123	470	козні	RANI Line Work Mix	1:4 by volume	15/11/2016	38.90	195	320	22/11/2016	6.50	13/12/2016	_8.20	
124	471	козні	R-3 Line Work Mix	1:4 by volume	16/11/2016	38.90	200	325	23/11/2016	6.90	14/12/2016	8.30	, i
125	472	козні	R-3 Line Work Mix	1;4 by volume	16/11/2016	38.90	200	325	23/11/2016	6.90	14/12/2016	8.20	
126	473	KOSHI	R-3 Line Work Mix	1:4 by volume	16/11/2016	38.90	200	325	23/11/2016	6.50	14/12/2016	8.30	
127	474	KOSHI	R-3 Line Work Mix	1:4 by volume	16/11/2016	38.90	200	325	23/11/2016	6.10	14/12/2016	8.60	
128	475	козні	R-3 Line Work Mix	1:4 by volume	16/11/2016	38.90	200	325	23/11/2016	6.50	14/12/2016	7.90	
129	476	козні	R-3 Line Work Mix	1:4 by volume	16/11/2016	38.90	200	325	23/11/2016	6.70	14/12/2016	8.30	
130	477	козні	R-21 Line Work Mix	1:4 by volume	16/11/2016	38.90	200	325	23/11/2016	6.70	14/12/2016	8.20	
131	478	козні	R-21 Line Work Mix	1:4 by volume	16/11/2016	38.90	200	325	23/11/2016	6.90	14/12/2016	8.20	
132	479	козні	R-21 Line Work Mix	1:4 by volume	16/11/2016	38.90	200	325	23/11/2016	6.10	14/12/2016	7.90	
133	480	козні	R-21 Line Work Mix	1:4 by volume	16/11/2016	38.90	200	325	23/11/2016	6.80	14/12/2016	8.20	
134	481	козні	R-21 Line Work Mix	1:4 by volume	16/11/2016	38.90	200	325	23/11/2016	6.90	14/12/2016	8.30	
135	482	козні	R-21 Line Work Mix	1:4 by volume	16/11/2016	38.90	200	325	23/11/2016	6.40	14/12/2016	8.20	
_							MIN 45m	Max 600m	Requi	ired strength	on 28 days m	tess than 7.	5 N/MM2

Approved by Construction Supervision Engineer/CSE

Test Checked by A.C.S.E Consultants Reps

CTCE-KALIKA J/V
Submitted by Project Manager
Test conducted by Q.C Manager
Contractore Reps

600

P.G-9

Biratnagar-Sub-Metropolitant City

SUMMERY OF MORTAR COMPRESSIVE STRENGTH TEST WORK MIX CUBE

	LAB REF	Name of		Details of MIX	0-11-	Consiste	ency & Settir	ng Time	-		34.4		G-10
S.N.	No.	CEMENT	Location/Structure	Details of MIX	Casting	Norm. Const.			7 day's cul	Str. N/mm2	28 day's cu Date	Str. N/mm2	Remarks
136	483	коѕні	RANI Line Work Mix	1:4 by volume	16/11/2016	38.90	200	325	23/11/2016	6.70	14/12/2016	8.30	
137	484	козні	RANI Line Work Mix	1:4 by volume	16/11/2016	38.90	200	325	23/11/2016	6.30	14/12/2016	7.80	
138	485	козні	RANI Line Work Mix	1:4 by volume	16/11/2016	38.90	200	325	23/11/2016	6.70	14/12/2016	8.60	
139	486	козні	RANI Line Work Mix	1:4 by volume	16/11/2016	38.90	200	325	23/11/2016	6.80	14/12/2016	8.30	
140	487	козні	RANI Line Work Mix	1:4 by volume	16/11/2016	38.90	200	325	23/11/2016	6.50	14/12/2016	8,30	
141	488	коѕні	RANI Line Work Mix	1:4 by volume	16/11/2016	38.90	200	325	23/11/2016	6.90	14/12/2016	8,40	
142	489	козні	R-22 Line Work Mix	1:4 by volume	16/11/2016	38.90	200	325	23/11/2016	6.10	14/12/2016	8.60	
143	490	козні	R-22 Line Work Mix	1:4 by volume	16/11/2016	38.90	200	325	23/11/2016	6.80	14/12/2016	8.00	
144	491	козні	R-22 Line Work Mix	1:4 by volume	16/11/2016	38.90	200	325	23/11/2016	6.80	14/12/2016	8.60	
145	492	козні	R-22 Line Work Mix	1:4 by volume	16/11/2016	38.90	200	325	23/11/2016	6.40	14/12/2016	8.60	
146	493	козні	R-22 Line Work Mix	1:4 by volume	16/11/2016	38.90	200	325	23/11/2016	6.40	14/12/2016	8.40	
147	494	коѕні	R-22 Line Work Mix	1:4 by volume	16/11/2016	38.90	200	325	23/11/2016	6.80	14/12/2016	7.90	
148	495	козні	R-28 Line Work Mix	1:4 by volume	21/11/2016	36.60	245	360	28/11/2016	6.70	19/12/2016	8.30	
149	496	козні	R-27 Line Work Mix	1:4 by volume	22/11/2016	37.10	255	370	29/11/2016	6.40	20/12/2016	8.00	
150	497	коѕні	R-22 Line Work Mix	1:4 by volume	23/11/2016	37.70	250	380	30/11/2016	6.50	21/12/2016	7.90	
							MIN 45m	Max 600m	Require	ed strength o	28rdays not	less than 7.5	N/MM2

Approved by Construction Supervision Engineer/CSE
Test Checked by A.C.S.E
Consultants Reps

CTCE-KALIKA J/V
Submitted by Project Manager
Test conducted by Q.C Manager
Contractore Reps

E

Biratnagar-Sub-Metropolitant City

SUMMERY OF MORTAR COMPRESSIVE STRENGTH TEST WORK MIX CUBE

	LAB REF	Name of		Details of MIX	Casting	Consiste	ency & Settir	ng Time	7 day's cut	e Crushing	28 day's cu	be crushing	Remarks
S.N.	No.	CEMENT	Location/Structure			Norm. Const.	Intial(min.)	Final(min.)	Date	Str. N/mm2	Date	Str. N/mm2	
151	498	козні	R-28 Line Work Mix	1:4 by volume	24/11/2016	38.30	240	360	31/11/2016	6.80	21/12/2016	8.60	
152	499	козні	R-28 Line Work Mix	1:4 by volume	25/11/2016	37.10	245	370	1/12/2016	6.40	22/12/2016	_8:30	
153	500	козні	R-3 Line Work Mix	1:4 by volume	25/11/2016	37.10	245	370	1/12/2016	6.00	22/12/2016	7.90	
154	501	козні	R-3 Line Work Mix	1:4 by volume	26/11/2016	36.90	240	380	2/12/2016	5.60	23/12/2016	8.00	
155	502	козні	R-5 Line Work Mix	1:4 by volume	26/11/2016	36.90	240	380	2/12/2016	5.70	23/12/2016	7.90	
156	503	козні	R-3 Line Work Mix	1:4 by volume	27/11/2016	37.30	260	370	3/12/2016	6.10	24/12/2016	8.00	
157	504	козні	R-37 Line Work Mix	1:4 by volume	27/11/2016	37.30	260	370	3/12/2016	6.10	24/12/2016	7.80	
158	505	козні	R-24 Line Work Mix	1:4 by volume	28/11/2016	38.00	250	390	5/12/2016	6.70	26/12/2016	7.90	
159	506	козні	R-28 Line Work Mix	1:4 by volume	28/11/2016	38.00	250	390	5/12/2016	5.90	26/12/2016	7.80	
160	507	козні	R-5 Line Work Mix	1:4 by volume	28/11/2016	38.00	250	390	5/12/2016	5.90	26/12/2016	7.80	
161	508	козні	R-3 Line Work Mix	1:4 by volume	29/11/2016	38.40	270	360	6/12/2016	6.80	27/12/2016	8,40	
162	509	козні	R-5 Line Work Mix	1:4 by volume	29/11/2016	38.40	270	360	6/12/2016	6.80	27/12/2016	8.80	
163	510	козні	R-28 Line Work Mix	1:4 by volume	29/11/2016	38.40	270	360	6/12/2016	6.70	27/12/2016	8.40	
164	511	козні	R-28 Line Work Mix	1:4 by volume	30/11/2016	38.60	270	360	7/12/2016	6.40	28/12/2016	8.70	
165	512	козні	R-37 Line Work Mix	1:4 by volume	30/11/2016	38.60	270	360	7/12/2016	7.20	28/12/2016	_8.40	
							MIN 45m	Max 600m	Requi	red strength	on 28 days no	ot less than 7.	5 N/MM2

Approved by Construction Supervision Engineer/CSE

Test Checked by A.C.S.E Consultants Reps

Biratnagar-Sub-Metropolitant City

SUMMERY OF MORTAR COMPRESSIVE STRENGTH TEST WORK MIX CUBE

P.G-12 FOR THE MONTH OF DECEMBER 2016 Consistency & Setting Time Name of LAB REF Details of MIX Casting 7 day's cube Crushing 28 day's cube crushing Remarks S.N. Location/Structure Str. N/mm2 Str. N/mm2 Norm. Const. Intial(min.) Final(min.) Date CEMENT Date No. 7/12/2016 6.80 28/12/2016 166 513 KOSHI R-3 Line Work Mix 1:4 by volume 30/11/2016 38.60 250 365 8.60 1:4 by volume | 30/11/2016 167 514 KOSHI WWTP WALL 38.60 250 365 7/12/2016 5.90 28/12/2016 7.80 6.30 28/12/2016 7-90 515 KOSHI R-37 Line Work Mix 1:4 by volume | 30/11/2016 38.60 250 365 7/12/2016 168 365 7/12/2016 6.40 28/12/2016 8.40 169 516 KOSHI R-28 Line Work Mix 1:4 by volume 30/11/2016 38.60 250 365 7/12/2016 6.50 28/12/2016 8.30 170 517 KOSHI R-7 Line Work Mix 1:4 by volume 30/11/2016 38.60 250 518 KOSHI 1:4 by volume 30/11/2016 38.60 250 365 7/12/2016 6.30 28/12/2016 7.90 171 R-3 Line Work Mix 37.50 210 315 8/12/2016 6.70 29/12/2016 8.20 WWTP WALL 1:4 by volume 1/12/2016 172 519 KOSHI 1/12/2016 37.50 210 315 8/12/2016 6.50 29/12/2016 8,00 520 KOSHI WWTP WALL 1:4 by volume 173 8/12/2016 6.30 29/12/2016 7.90-1/12/2016 37.50 210 315 174 521 KOSHI WWTP WALL 1:4 by volume 320 10/12/2016 5.60 30/12/2016 7.90 3/12/2016 37.00 200 175 522 KOSHI WWTP WALL 1:4 by volume 37.50 11/12/2016 6.30 31/12/2016 8.20 176 523 KOSHI R-3 Line Work Mix 1:4 by volume 4/12/2016 205 325 11/12/2016 6.00 31/12/2016 177 KOSHI WWTP WALL 1:4 by volume 4/12/2016 37.50 205 325 7.80 524 KOSHI R-3 Line Work Mix 1:4 by volume 4/12/2016 37.50 205 325 11/12/2016 5.70 31/12/2016 7.80 178 526

Approved by Construction Supervision Engineer/CSE

Test Checked by A.C.S.E.

Consultants Reps

CTCE-KALIKA J/V Submitted by Project Manager Test conducted by Q.C Manager Contractore Reps

MIN 45m

Max 600m

SUMMARY OF FIELD DENSITY TES (IS:2720:-PART-28) FOR THE MONTH OF DECEMBER 2016

Description: Field Density Tests on R2 Road From 0+00 to 0+120 S-13 Acess Road

_	L/Ref.		S	UB GRADE				
S.N.	I. No. Date			Date Location/ Area MDD Gm/CC Deg				
1	-		0+010 LHS	2.08	97.0	8.50		
2			0+020 RHS	2.09	97.0	7.50		
)			0+030 CL	2.07	97.00	7.50	-	
4			0+040 LHS	2.10	98.00	8.00	•	
5			0+050 RHS	2.11	98.00	8.00		
6	-	7/12/2016	0+060 CL	2.08	97.00	8.00		
7			0+070 LHS	2.07	97.00	8.50	-	
8			0+080 RHS	2.06	96.00	7.50		
9	FD 25		0+090 CL	2.08	97.00	7.50		
10	-		0+100 LHS	2.06	96.00	8.00		
11			0+100 RHS	2.07	97.00	8.00		
12	*		0+120 CL	2.09	98.00	8.00		
1								
-						,		
	*) }	***				
	•			2.110	95	OMC <8.50		

SMEC-Brisbane-AQUA-CEMAT-BDA

Approved by C.S.E

Test Checked by A.C.S.E

Consultant Reps

CTCE-KALIKA J/V

Submitted by Project Manager

Test Conducted by Q.C Manager

SUMMARY OF FIELD DENSITY TES (IS:2720:-PART-28) FOR THE MONTH OF DECEMBER 2016

Description : Field Density Tests on R2 ch:R-122 LINE AMAR MARG (0+00 to 1+100)

SUB GRADE

S.N.	L/Ref. No.	Date	Location/ Area	MDD Gm/CC	Degree	of Compaction, %	Remarks
1			0+00 CL	2.03	96.6	5.00	
2			0+020 CL	2.01	95.7	4.00	
3			0+040 CL	2.03	96.57	4.50	
4			0+060 CL	2.02	95.73	5.00	
5			0+080 CL	2.04	96.68	4.00	
6			0+100 CL	2.03	96.57	4.00	
7			0+120 CL	2.02	95.73	4.00	
8			0+140 CL	2.04	96.68	5.00	
9	ED 00	45/40/0040	0+150 CL	2.04	96.68	4.00	
10	FD 28	15/12/2016	0+160 CL		96.68	4.00	
	-						
		1					
				2.100	95	OMC <8.25	

SMEC-Brisbane-AQUA-CEMAT-BDA

Approved by C.S.E

Test Checked by A.C.S.E

Consultant Reps

CTCE-KALIKA J/V

Submitted by Project Manager

Test Conducted by Q.C Manager

SUMMARY OF FIELD DENSITY TES (IS:2720:-PART-28) FOR THE MONTH OF DECEMBER 2016

Description: Field Density Tests on R2 ch:R-119LINE AMAR MARG (0+00 to 1+190)

SUB GRADE

S.N.	L/Ref. No.	Date	Location/ Area	MDD Gm/CC	Degree	e of Compaction, %	Remarks
1			0+00 CL	2.04	97.1	4.50	
2			0+020 CL	2.03	96.6	4.00	
3			0+050 CL	2.01	95.61	4.50	
4			0+070 CL	2.02	96.00	4.00	
5			0+090 CL	2.01	95.61	4.50	
6			0+100 CL	2.03	96.62	4.00	
7			0+110 CL	2.04	97.32	4.00	
8			0+120 CL	2.03	96.84	6.00	
9	FD 29	15/12/2016	0+140 CL	2.03	96.84	4.00	
10	1025	13/12/2010	0+165 CL	2.04	94.32	4.00	
	-		0+180 CL	2.03	96.84	4.00	
			0+180 CL	2.04	97.32	5.00	
					/		
				/			
				2.100	95	OMC <8.25	

SMEC-Brisbane-AQUA-CEMAT-BDA

Approved by C.S.E

Test Checked by A.C.S.E

Consultant Reps

CTCE-KALIKA J/V ★

Submitted by Project Manager

Test Conducted by Q.C Manager

SUMMARY OF FIELD DENSITY TES (IS:2720:-PART-28) FOR THE MONTH OF DECEMBER 2016

Description : Field Density Tests on R2 ch:R-14 way to S-5 Way 0+00 to 0+120 R-4 Line 2+00 to 2+400 National Trading to Jatuwa Road

SUB GRADE

S.N.	L/Ref. No.	Date	Location/ Area	MDD Gm/CC	Degree	of Compaction, %	Remarks
1			0+010 CL	2.02	96.19		
2			0+030 CL	2.05	97.62		
3	FD 30	15/12/2016	0+050 CL	2.04	97.14		
4	LD 30	15/12/2016	0+070 CL	2.03	96.69		
5			0+090 CL	2.03	96.67		
6			0+120 CL 2.04 97.14				
Required				2.10	95.00	OMC <8.25	
1			2+00 CL	1.90	95.67		
2			2+035 CL	1.92	96.39		
3			2+070 CL	1.96	98.40		
4	-		2+110 CL	1.93	96.94		
5			2+145 CL	1.94	97.55		
6	ED 31	16/12/2016	2+180 CL	1.94	97.55		
7	1031	D 31 16/12/2016	2+215 CL	1.94	97.32		
8			2+250 CL	1.90	95.46		
9			2+285 CL	1.95	97.81		-
10			2+320 CL	1.92	96.48		-0
11			2+365 CL	1.95	97.78		
12			2+400 CL	1.92	96.48		
				1.990	95	OMC <10.25	

SMEC-Brisbane-AQUA-CEMAT-BDA

Approved by C.S.E

Test Checked by A.C.S.E

Consultant Reps

CTCE-KALIKA J/V

Submitted by Project Manager

Test Conducted by Q.C Manager

SUMMARY OF FIELD DENSITY TES (IS:2720:-PART-28) FOR THE MONTH OF DECEMBER 2016

Description : Field Density Tests on CH:0+00 to 1+185 R-4 Road National Trading to Jattuwa Road

	L/Ref.	UB GRADE				P	.G-1
S.N.	No.	Date	Location/ Area -CL	MDD Gm/CC	Degre	e of Compaction, %	Remarks
1			0+030	1.91	96.2	4.00	
2			0+060	1.91	96.2	5.50	
3			0+090	1.94	97.44	5.00	
4			0+120	1.94	97.44	5.00	
5			0+150	1.90	95.48	4.50	
6			0+180	1.91	96.15	5.00	
7			0+210	1.97	98.80	4.00	
8			0+240	1.91	95.77	5.00	
9		20,21,22	0+270	1.95	97.76	5.00	
10			0+300	1.94	97.29	5.00	
1.1	FD 34	20,21,22 December –	0+330	1.92	96.36	5.00	
12		2016	0+360	1.95	97.76	5.00	
13	-		0+390	1.93	96.80	4.00	1
14			0+420	1.93	96.80	4.00	
15			0+450	1.97	98.77	5.00	
16			0+480	1.94	97.52	5.00	
17			0+510	1.93	96.80	5.00	
18			0+550	1.94	97.52	4.00	
19			0+580	1.92	96.60	4.00	
20			0+610	1.95	98.17	4.00	
21			0+640	1.92	96.80	4.00	
22			0+670	1.93	96.80	5.00	
				1.990	95	OMC <10.25	

SMEC-Brisbane-AQUA-CEMAT-BDA

Approved by C.S.E

Test Checked by A.C.S.E

Consultant Reps

CTCE-KALIKA J/V

Submitted by Project Manager

Test Conducted by Q.C Manage

SUMMARY OF FIELD DENSITY TES (IS:2720:-PART-28) FOR THE MONTH OF DECEMBER 2016

Description : Field Density Tests on CH:0+00 to 1+185 R-4 Road National Trading to Jattuwa Road

	L/Ref.	UB GRADE				P	.G-2
S.N.		Date	Location/ Area -CL	MDD Gm/CC	Degre	e of Compaction, %	Remarks
23			0+700	1.93	96.8	4.50	
24			0+730	1.95	98.2	5.00	
25			0+760	1.92	96.38	4.00	
26			0+790	1.97	98.91	4.00	
27			0+820	1.98	99.46	4.00	
28			0+850	1.93	97.05	5.00	
29			0+880	1.94	97.28	4.50	
30			0+910	1.89	95.22	5.00	
31			0+940	1.93	97.02	4.00	
32			0+970	1.95	98.07	4.00	
33	FD 34	20,21,22 December -	1+000	1.92	96.33	4.00	
34		2016	1+030	1.94	97.46	5.00	
35	-		1+060	1.91	95.95	4.50	
36			1+090	1.91	95.95	5.00	
37			1+110	1.95	97.79	4.50	
38			1+130	1.91	96.13	4.00	
39			1+150	1.93	96.96	4.00	
40			1+160	1.90	95.47	4.00	
11			1+170	1.94	97.36	4.50	
12			1+185	1.91	96.13	4.00	
	-			1.990	95	OMC <10.25	

SMEC-Brisbane-AQUA-CEMAT-BDA

Approved by C.S.E

Test Checked by A.C.S.E

Consultant Reps

CTCE-KALIKA J/V
Submitted by Project Manager

Test Conducted by Q.C Manage

Biratnagar Sub-Metropolitant City

SUMMERY OF LAB TEST RESULT OF SUB GRADE

(For the Month of DECEMBER 2016)

S.N.		DESCRIPTION OF MATERIAL	TYPE OF MAT.	Chanage/Location	Modified F	roctorGm/CC	CBR	REMARKS	
	REF. NO.				MDD	OMC %	%	KEWAKKS	
1	MR 30	SUB GRADE	SANDY & Gravel mixede	0+00 to 0+120	2.140	8.50	9.0	S-13 Acess	
2	MR 31	SUB GRADE	Sandy Clay Soil	5+480 to 6+380	2.110	9.50	8.0	Dharamban Road	
3	MR 32	SUB GRADE	Clay Soil	0+00 to 0+160	2.100	8.00	8.0	R-14 Line	
4	MR 33	SUB GRADE	Clay Soil	R-4 line 0+00 to 1+185	1.990	10.25	6.5	R-4 Road	
A.		***				,			
	y x								
A	* 1	REQUIREMENT LIMITS	ade and Bridge works Seet		.)		Min.		

SMEC-Brisbane-AQUA-CEMAT-BDA

Approved by C.S.E

Test Checked by A.C.S.E

Consultant Reps

CTCE-KALIKA J/V

Submitted by Project Manager

Test Conducted by Q.C Manager

Contractors Reps

Biratnagar Sub-Metropolitant City

MONTHLY Test Result Summary Sheet For The Month of DECEMBER 2016

STIUEIP

Graded Crushed Stone Base Course (Process Control)

STANDARD SPECIFICATION FOR ROAD AND BRIDGE WORKS SECTION 1200 Table 12.3 Physical Requirement of Graded Crushed Stone Base

SN	LAB REF	Date Tested	Location/ Chainage	Grading sieve size (mm) (% passing by weight)						FI	CR Ratio	LAA	AIV	SSS 5 cycle	Soaked CBR	Lab.	Lab. OMC	Remarks		
110	No			40	31.5	20	10	4.75	2.36	0.60	0.075	%	(%)	(%)	(%)	(%)	(%)	(g/cc)	(%)	
1	80	20/12/2016	CH:3+520 LHS	100	97.8	74.9	51.1	39.2	32.3	21.2	6.9	17.38	89.2	32.52	18.57	2.23	96	2.3	6.50	
2	81	20/12/2016	CH:3+770 LHS	100	96.4	69.0	58.1	39.6	34.1	20.5	6.7	18.90	88.6	32.24	18.00	2.39				
3	82	20/12/2016	CH:3+770 LHS	100	96.4	68.2	51	32.8	27.5	17.3	6.8	18.80	89.0	32.12	14.86	2.06		·		
4	83	21/12/2016	CH:3+270 to 3+370 LHS	100	97.1	71.3	53.5	34.7	28.7	17.8	7.2	18.23	88.1	32.32	16.29	1.39		1		
5	84	21/12/2016	CH:3+370 to 3+470 LHS	100	97.3	71.2	52.6	33.4	26.6	16.8	6.1	18.00	87.3	32.16	17.71					
6	85	21/12/2016	CH: 3+370 to 3+470 LHS	100	97.3	71.2	52.6	33.4	26.6	16.8	6.1	18.6	87.6	32.24	18.29	1.56				
7	86	21/12/2016	CH: 3+570 to 3+670 LHS	100	97.1	70.9	51.2	32.7	25	16.1	6.4	19.31	89.1	32.56	17.14	1.				
8	87	21/12/2016	CH: 3+670 to 3+770 LHS	100	97.4	74.9	50	31.7	23.8	16.0	6.5	18.82	88.5	32.76	20.00	1.77				
9	88	21/12/2016	CH: 3+670 to 3+770 LHS	100	96.2	73.6	46.5	30.3	22.5	15.2	6.5	17.24	88.1	32.96	19.43					
10	89	21/12/2016	CH: 3+870 to 3+970LHS	100	96.6	76.2	48.5	31.0	22.4	14.7	6.0	17.2	87.8	33.16	18.00	1.93				
11	90	21/12/2016	CH: 3+970 to 4+070 LHS	100	96.6	72.9	47.9	36.6	30.2	19.5	5.6	18.25	86.6	32.88	17.43	1.78				
12	91	21/12/2016	CH: 3+970 to 4+070 LHS	100	96.3	72.7	47.8	36.5	30.0	19.4	5.6	18.1	85.2	33.24	16.00	1.86				
	Requ	uired Specif	acation	100	85-100	62-92	40-70	26-55	21-53			≤ 25	≥ 80	≤ 35	≤ 25	Max 12%	≥80			

REMARKS: Crushed Stone base

SMEC-Brisbane-AQUA-CEMAT-BDA

Approved by C.S.E

Test Checked by A.C.S.E

Consultant Reps

CTCE-KALIKA J/V

Submit by Project Manager

Test Conducted by Q.C Manager

Consultant Reps

